Automated Analysis of Changes in Privacy Policies: A Structured Self-Attentive Sentence Embedding Approach

判决 嵌入 隐私政策 计算机科学 自然语言处理 互联网隐私 人工智能 业务 心理学 计算机安全 信息隐私 知识管理 人机交互
作者
Fangyu Lin,Laura Brandimarte,Hsinchun Chen,Sagar Samtani,Hongyi Zhu
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
被引量:9
标识
DOI:10.25300/misq/2024/17115
摘要

The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a Self-Attentive Annotation System (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art Machine Learning (ML) and Deep Learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swzzaf发布了新的文献求助10
1秒前
Joe发布了新的文献求助10
1秒前
烟花应助积极羽毛采纳,获得10
2秒前
施小好完成签到,获得积分10
2秒前
霖昭发布了新的文献求助10
2秒前
宠辱不惊完成签到,获得积分10
3秒前
3秒前
端庄擎汉完成签到,获得积分20
6秒前
syqlyd完成签到 ,获得积分10
6秒前
7秒前
胖虎发布了新的文献求助10
7秒前
霖昭完成签到,获得积分10
8秒前
努力完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
CodeCraft应助一页采纳,获得10
11秒前
cxwcn完成签到,获得积分10
12秒前
清浔发布了新的文献求助20
12秒前
12秒前
CipherSage应助Joe采纳,获得10
12秒前
情怀应助火星上的亦寒采纳,获得10
13秒前
loen发布了新的文献求助10
13秒前
笨笨的弱完成签到 ,获得积分10
13秒前
yyyyou完成签到,获得积分10
14秒前
lee发布了新的文献求助10
15秒前
15秒前
深情安青应助爱学习的YY采纳,获得10
15秒前
积极羽毛发布了新的文献求助10
16秒前
念白发布了新的文献求助10
16秒前
16秒前
小芳应助施小好采纳,获得10
16秒前
爱学习的YY完成签到 ,获得积分10
17秒前
沉静大有应助端庄的正豪采纳,获得10
19秒前
xxxx发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
yy完成签到 ,获得积分10
22秒前
123完成签到,获得积分20
22秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334609
求助须知:如何正确求助?哪些是违规求助? 2963868
关于积分的说明 8611689
捐赠科研通 2642793
什么是DOI,文献DOI怎么找? 1446965
科研通“疑难数据库(出版商)”最低求助积分说明 670499
邀请新用户注册赠送积分活动 658693