A high-sensitivity and multi-response magnetic nanofiber-aerogel sensor with directionally aligned porous structure based on triple network for interactive human–machine interfaces

气凝胶 灵敏度(控制系统) 纳米纤维 材料科学 多孔性 纳米技术 复合材料 工程类 电子工程
作者
Yu Fu,Shuangkun Wang,Ye Tian,Boqiang Zhang,Zhihua Zhao,Zhenshuai Wan,Xingzhou Chen,Dengjie Zhu,Liuhua Yang,Zung‐Hang Wei
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:497: 154441-154441 被引量:18
标识
DOI:10.1016/j.cej.2024.154441
摘要

Flexible multimodal sensors with a porous structure have attracted tremendous attentions due to their low density, high specific surface area, a wide detection range and satisfied deformability. However, pores disorder and maldistribution issues of these multimodal sensors are major concerns during their sensing response, which often cause poor linearity and unstable sensing characteristics. Herein, a facile and rapid approach was proposed to fabricate a multifunctional magnetic sensor with directionally aligned porous structure based on triple network by combining electrospun nanofibers, bidisperse magnetic particles and sodium alginate/chitosan foam. The electrospun nanofibers were employed as three-dimensional skeletons for the crystallization and vertical growth of ice crystals. Benefiting from the remarkable structure orientation, the homogenized nanofiber-aerogel scaffold possesses excellent flexibility, superior deformation recoverability and biocompatibility. The assembled sensors not only exhibit a high sensitivity (0.40 T−1), rapid response/recovery time and long stability under magnetic stimuli, but also displays satisfied cross-sensitivity, quick response and reliable durability (8000 cycles) in response to external mechanical functions. Importantly, the respective input stimuli could be clearly discriminated via outputting the electrical signals of opposite or different trends. Furthermore, the sensor could be employed as wearable skins to monitor various physiological signals and realize information translation by Morse mode for individuals with disabilities. Additionally, a wearable gesture recognition system with assistance of the deep learning algorithm was testified, with high average recognition accuracy of 99 %. The simple fabrication process and prominent multifunctional characteristics of the proposed sensor endow it with an extensive application prospect in the field of interactive human–machine interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
vicin发布了新的文献求助20
1秒前
ding应助明亮元柏采纳,获得10
1秒前
吴家豪发布了新的文献求助10
2秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
4秒前
田様应助zzzzc采纳,获得30
4秒前
ylx应助科研通管家采纳,获得30
4秒前
lcc应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
钟D摆发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
茗牌棉花发布了新的文献求助10
4秒前
wxyshare应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
简单的丑发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
4秒前
5秒前
甜滋滋完成签到,获得积分10
6秒前
清辰子丶发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
核桃发布了新的文献求助10
10秒前
科研通AI6应助苏梓卿采纳,获得10
12秒前
tangyy1205完成签到,获得积分10
12秒前
Y哈哈哈完成签到,获得积分10
13秒前
小小沙完成签到,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687