亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Neural Collaborative Search for Pickup and Delivery Problems

计算机科学 人工智能 皮卡 人工神经网络 机器学习 图像(数学)
作者
Detian Kong,Yining Ma,Zhiguang Cao,Tianshu Yu,Jianhua Xiao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2024.3450850
摘要

In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3 solver especially on the more constrained PDP variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuhanghang完成签到,获得积分10
1秒前
香蕉觅云应助lbjcp3采纳,获得10
4秒前
Easypass完成签到 ,获得积分10
15秒前
19秒前
20秒前
fleeper发布了新的文献求助10
25秒前
胡茶茶完成签到 ,获得积分10
34秒前
感动白开水完成签到,获得积分10
39秒前
49秒前
52秒前
lbjcp3发布了新的文献求助10
53秒前
丁宇卓完成签到 ,获得积分10
56秒前
cp161104发布了新的文献求助10
57秒前
搜集达人应助cp161104采纳,获得10
1分钟前
cp161104完成签到,获得积分10
1分钟前
qinli发布了新的文献求助10
1分钟前
fleeper发布了新的文献求助10
1分钟前
大方易巧完成签到 ,获得积分10
1分钟前
1分钟前
下雨的颜色完成签到,获得积分10
1分钟前
mayue发布了新的文献求助10
1分钟前
mayue完成签到,获得积分20
2分钟前
Lucas应助fleeper采纳,获得10
2分钟前
华仔应助lbjcp3采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
怪胎完成签到,获得积分10
2分钟前
小石头发布了新的文献求助10
2分钟前
2分钟前
lbjcp3发布了新的文献求助10
3分钟前
彭于晏应助小石头采纳,获得10
3分钟前
科研通AI2S应助lbjcp3采纳,获得10
3分钟前
3分钟前
科研通AI2S应助优秀夏天采纳,获得10
3分钟前
mingyue发布了新的文献求助10
3分钟前
韩soso完成签到,获得积分10
3分钟前
小蘑菇应助科研通管家采纳,获得20
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795241
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146