Efficient Neural Collaborative Search for Pickup and Delivery Problems

计算机科学 人工智能 皮卡 人工神经网络 机器学习 图像(数学)
作者
Detian Kong,Yining Ma,Zhiguang Cao,Tianshu Yu,Jianhua Xiao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2024.3450850
摘要

In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3 solver especially on the more constrained PDP variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏伯安发布了新的文献求助10
2秒前
ghn发布了新的文献求助10
2秒前
成就书雪完成签到,获得积分10
3秒前
Hello应助酷酷碧采纳,获得10
3秒前
3秒前
11月前完成开题完成签到,获得积分10
4秒前
tree完成签到,获得积分10
4秒前
YYJ25发布了新的文献求助10
5秒前
香蕉觅云应助流浪小诗人采纳,获得10
6秒前
8秒前
8秒前
曙光完成签到,获得积分10
8秒前
勤劳的身影完成签到,获得积分20
10秒前
笑点低的牛二完成签到 ,获得积分10
11秒前
合适的半青应助123采纳,获得10
11秒前
悟川完成签到 ,获得积分10
12秒前
13秒前
14秒前
甜筒发布了新的文献求助10
14秒前
充电宝应助clean采纳,获得10
15秒前
happy发布了新的文献求助10
16秒前
16秒前
诸笑白发布了新的文献求助10
18秒前
19秒前
landolu发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
22秒前
耍酷的夏云关注了科研通微信公众号
23秒前
Lynnyue完成签到,获得积分10
23秒前
if发布了新的文献求助100
25秒前
25秒前
26秒前
weven完成签到 ,获得积分10
26秒前
27秒前
叶落花开应助Anquan采纳,获得10
30秒前
车小帅完成签到,获得积分10
32秒前
AI倩完成签到 ,获得积分10
35秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849