材料科学
涂层
聚氨酯
阻燃剂
化学工程
膨胀的
发射率
辐射冷却
多孔性
复合数
吸收(声学)
复合材料
光学
气象学
物理
工程类
作者
Wei Cai,Junling Wang,Wei Wang,Sicheng Li,Mohammad Ziaur Rahman,Benjamin Tawiah,Yang Ming,Xia Zhou,Weiyi Xing,Yuan Hu,Jixin Zhu,Bin Fei
出处
期刊:Small
[Wiley]
日期:2024-08-08
被引量:1
标识
DOI:10.1002/smll.202402349
摘要
Abstract The aesthetic demand has become an imperative challenge to advance the practical and commercial application of daytime radiative cooling technology toward mitigating climate change. Meanwhile, the application of radiative cooling materials usually focuses on the building surface, related tightly to fire safety. Herein, the absorption and reflection spectra of organic and inorganic colorants are first compared in solar waveband, finding that iron oxides have higher reflectivity in NIR region. Second, three kinds of iron oxides‐based colorants are selected to combine porous structure and silicon‐modified ammonium polyphosphate (Si‐APP) to engineer colored polyurethane‐based (PU) coating, thus enhancing the reflectivity and flame retardancy. Together with reflectivity of more than 90% in near‐infrared waveband and infrared emissivity of ≈91%, average temperature drops of ≈5.7, ≈7.9, and ≈3.8 °C are achieved in porous PU/Fe 2 O 3 /Si‐APP, porous PU/Fe 2 O 3 ·H 2 O/Si‐APP, and porous PU/Fe 3 O 4 ·H 2 O/Si‐APP, compared with dense control samples. The catalysis effect of iron oxides in the cross‐linking reaction of pyrolysis products and dehydration mechanism of Si‐APP enable PU coating to produce an intumescent and protective char residue. Consequently, PU composite coatings demonstrate desirable fire safety. The ingenious choice of colorants effectively minimizes the solar heating effect and trades off the daytime radiative cooling and aesthetic appearance requirement.
科研通智能强力驱动
Strongly Powered by AbleSci AI