急性胰腺炎
胰腺炎
粪便
肠道菌群
粪便细菌疗法
医学
内科学
胃肠病学
生物
微生物学
免疫学
抗生素
艰难梭菌
作者
Ruru Gu,Hongtao Wei,Tianyu Cui,G L Wang,Ying-yi Luan,Ruixia Liu,Chenghong Yin
标识
DOI:10.1096/fj.202401565rr
摘要
Acute pancreatitis (AP) is a serious health problem that dysregulates intestinal microbiota. Angiotensin (Ang)-(1-7) plays a protective role in the intestinal barrier in AP, but its effect on intestinal microbiota remains clear. To investigate the impact of Ang-(1-7) on AP-induced intestinal microbiota disorder and metabolites. We collected blood and fecal samples from 31 AP patients within 48 h after admission to the hospital, including 11 with mild AP (MAP), 14 with moderately severe AP (MSAP), six with severe AP (SAP). Mice were divided into four groups: control, AP, AP + Ang-(1-7) via tail vein injection, and AP + Ang-(1-7) via oral administration. The samples of mice were collected 12 h after AP. Pancreatic and intestinal histopathology scores were analyzed using the Schmidt and Chiu scores. Fecal microbiota and metabolites analysis was performed via 16S rDNA sequencing and nontargeted metabolomics analysis, respectively. In patients, the abundance of beneficial bacteria (Negativicutes) decreased and pathogenic bacteria (Clostridium bolteae and Ruminococcus gnavus) increased in SAP compared with MAP. Ang-(1-7) levels were associated with changes in the microbiota. There were differences in the intestinal microbiota between control and AP mice. Ang-(1-7) attenuated intestinal microbiota dysbiosis in AP mice, reflecting in the increase in beneficial bacteria (Odoribacter and Butyricimonas) than AP, as well as pancreatic and intestinal injuries. Oral administration of Ang-(1-7) reversing AP-induced decreases in metabolisms: secondary bile acids, emodin, and naringenin. Ang-(1-7) may improve intestinal microbiota dysbiosis and modulate fecal metabolites in AP, thereby reducing the damage of AP.
科研通智能强力驱动
Strongly Powered by AbleSci AI