Thermal Behavior of Lithium- and Sodium-Ion Batteries: A Review on Heat Generation, Battery Degradation, Thermal Runway – Perspective and Future Directions

热失控 降级(电信) 锂(药物) 电池(电) 材料科学 发热 核工程 电解质 放热反应 工艺工程 化学 工程类 热力学 电极 电气工程 物理 功率(物理) 医学 内分泌学 物理化学 有机化学
作者
Deepika Velumani,Ankit Bansal
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (23): 14000-14029 被引量:63
标识
DOI:10.1021/acs.energyfuels.2c02889
摘要

Safety is a major challenge plaguing the use of Li-ion batteries (LIBs) in electric vehicle (EV) applications. A wide range of operating conditions with varying temperatures and drive cycles can lead to battery abuse. A dangerous consequence of these abuses is thermal runaway (TR), an exponential increase in temperature inside the battery caused by the exothermic decomposition of the cell materials that leads to fire and explosion. It is imperative to develop methodologies to accurately predict and mitigate thermal runway. Sodium-ion batteries (SIBs) are inherently safer than LIBs. In addition to offering better safety, SIBs are gaining momentum due to the abundance and low cost of their raw materials compared to the limited lithium resources and high cost of elements such as cobalt, copper, and nickel used in LIBs. However, the challenge of low energy density impedes the maturation of sodium-ion technology to the same level as lithium-ion technology. There are additional challenges to the acceptability of sodium-ion batteries due to the poor sodium kinetics during insertion reactions, leading to rapid material degradation. Additionally, the higher solubility of the solid electrolyte interface (SEI) observed in the case of SIBs may lead to undesired side reactions, causing increased heat generation. This paper presents a comprehensive review of the heat-release mechanisms, their differences, and prediction methodologies for the two battery chemistries. Various experimental and modeling approaches for TR detection from the literature are reviewed. Future research directions toward the development of a battery management system (BMS) with the capability to identify the precursors to thermal runaway and implement mitigation strategies are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan发布了新的文献求助10
刚刚
Jasper应助GUGU采纳,获得10
刚刚
ani完成签到,获得积分10
刚刚
1秒前
叽里咕卢发布了新的文献求助10
2秒前
2秒前
Serena完成签到 ,获得积分10
3秒前
大个应助华贞采纳,获得10
3秒前
4秒前
4秒前
孝顺的尔丝完成签到,获得积分10
4秒前
5秒前
充电宝应助顺利珂采纳,获得10
6秒前
7秒前
宋宋发布了新的文献求助10
8秒前
星辰大海应助巧克小花花采纳,获得10
9秒前
顾矜应助生动的河马采纳,获得30
9秒前
hpy发布了新的文献求助10
9秒前
媛肖发布了新的文献求助10
10秒前
所所应助乐正广山采纳,获得10
11秒前
11秒前
脑洞疼应助瞌睡不打瞌采纳,获得10
11秒前
狗废废的妈妈完成签到,获得积分10
11秒前
12秒前
科研通AI5应助beiyangtidu采纳,获得10
12秒前
cc发布了新的文献求助10
12秒前
宋宋完成签到,获得积分20
13秒前
十丶年完成签到,获得积分10
14秒前
15秒前
15秒前
疯狂的狮子完成签到,获得积分10
15秒前
as9988776654完成签到 ,获得积分10
16秒前
islazheng应助fenghuo采纳,获得30
16秒前
16秒前
PPP完成签到,获得积分10
17秒前
ccccchen发布了新的文献求助10
17秒前
lishuang5完成签到 ,获得积分10
18秒前
小胡不吃草莓完成签到 ,获得积分10
19秒前
Leo发布了新的文献求助10
19秒前
MC123完成签到,获得积分10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737020
求助须知:如何正确求助?哪些是违规求助? 3280873
关于积分的说明 10021655
捐赠科研通 2997532
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782098
科研通“疑难数据库(出版商)”最低求助积分说明 749707