Thermal Behavior of Lithium- and Sodium-Ion Batteries: A Review on Heat Generation, Battery Degradation, Thermal Runway – Perspective and Future Directions

热失控 降级(电信) 锂(药物) 电池(电) 材料科学 发热 核工程 电解质 放热反应 工艺工程 化学 工程类 热力学 电极 电气工程 物理 功率(物理) 医学 有机化学 物理化学 内分泌学
作者
Deepika Velumani,Ankit Bansal
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (23): 14000-14029 被引量:43
标识
DOI:10.1021/acs.energyfuels.2c02889
摘要

Safety is a major challenge plaguing the use of Li-ion batteries (LIBs) in electric vehicle (EV) applications. A wide range of operating conditions with varying temperatures and drive cycles can lead to battery abuse. A dangerous consequence of these abuses is thermal runaway (TR), an exponential increase in temperature inside the battery caused by the exothermic decomposition of the cell materials that leads to fire and explosion. It is imperative to develop methodologies to accurately predict and mitigate thermal runway. Sodium-ion batteries (SIBs) are inherently safer than LIBs. In addition to offering better safety, SIBs are gaining momentum due to the abundance and low cost of their raw materials compared to the limited lithium resources and high cost of elements such as cobalt, copper, and nickel used in LIBs. However, the challenge of low energy density impedes the maturation of sodium-ion technology to the same level as lithium-ion technology. There are additional challenges to the acceptability of sodium-ion batteries due to the poor sodium kinetics during insertion reactions, leading to rapid material degradation. Additionally, the higher solubility of the solid electrolyte interface (SEI) observed in the case of SIBs may lead to undesired side reactions, causing increased heat generation. This paper presents a comprehensive review of the heat-release mechanisms, their differences, and prediction methodologies for the two battery chemistries. Various experimental and modeling approaches for TR detection from the literature are reviewed. Future research directions toward the development of a battery management system (BMS) with the capability to identify the precursors to thermal runaway and implement mitigation strategies are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
albertchan完成签到,获得积分10
4秒前
Trasure完成签到,获得积分10
7秒前
宋晓蓝发布了新的文献求助10
7秒前
勤劳滑板完成签到,获得积分10
7秒前
领导范儿应助大大小小采纳,获得30
7秒前
栗子鱼发布了新的文献求助10
10秒前
金三瘦发布了新的文献求助10
10秒前
14秒前
14秒前
大大小小完成签到,获得积分20
15秒前
清爽的绫完成签到,获得积分10
15秒前
lzd完成签到,获得积分10
15秒前
优雅冬灵发布了新的文献求助10
19秒前
慕容炳发布了新的文献求助10
21秒前
bkagyin应助zzz采纳,获得10
22秒前
sss555完成签到,获得积分20
22秒前
sss555发布了新的文献求助50
26秒前
不会失忆完成签到,获得积分10
27秒前
聪慧勒完成签到,获得积分10
31秒前
paper完成签到 ,获得积分10
31秒前
艾科研完成签到,获得积分10
32秒前
传奇3应助smile采纳,获得10
32秒前
赘婿应助沉静青旋采纳,获得10
33秒前
旧旧完成签到 ,获得积分10
34秒前
34秒前
果粒程完成签到 ,获得积分10
36秒前
ghost发布了新的文献求助10
38秒前
不会学术的羊完成签到,获得积分10
38秒前
40秒前
40秒前
独孤完成签到 ,获得积分10
41秒前
MFiWanting完成签到,获得积分10
43秒前
坦率的乐蕊完成签到 ,获得积分10
45秒前
45秒前
ccq发布了新的文献求助10
45秒前
优雅冬灵完成签到,获得积分10
47秒前
迷路的初柔完成签到 ,获得积分10
48秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023