Class-aware data augmentation by GAN specialisation to improve endoscopic images classification

级配 计算机科学 班级(哲学) 人工智能 上下文图像分类 机器学习 深度学习 模式识别(心理学) 图像(数学)
作者
Cyprien Plateau-Holleville,Yannick Benezeth
标识
DOI:10.1109/bhi56158.2022.9926846
摘要

An expert eye is often needed to correctly identify mucosal lesions within endoscopic images. Hence, computer-aided diagnosis systems could decrease the need for highly specialized senior endoscopists and the effect of medical desertification. Moreover, they can significantly impact the latest endoscopic classification challenges such as the Inflammatory Bowel Disease (IBD) gradation. Most of the existing methods are based on deep learning algorithms. However, it is well known that these techniques suffer from the lack of data and/or class imbalance which can be lowered by using augmentation strategies thanks to synthetic generations. Late GAN framework progress made available accurate and production-ready artificial image generation that can be harnessed to extend training sets. It requires, however, to deal with the unsupervised nature of those networks to produce class-aware artificial images. In this article, we present our work to extend two datasets through a class-aware GAN-based augmentation strategy with the help of the state-of-the-art framework StyleGAN2-ADA and fine-tuning. We especially focused our efforts on endoscopic and IBD datasets to improve the classification and gradation of these images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123关注了科研通微信公众号
刚刚
墨染锦年完成签到,获得积分10
1秒前
Rondab应助科研汪星人采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
晨晨完成签到,获得积分20
2秒前
简单灵竹发布了新的文献求助10
2秒前
叶子发布了新的文献求助10
2秒前
哈哈发布了新的文献求助10
3秒前
3秒前
3秒前
情怀应助he大海贼采纳,获得10
4秒前
聪慧的梦安完成签到,获得积分10
4秒前
zz发布了新的文献求助30
4秒前
ZZL应助章鱼采纳,获得20
5秒前
结实的纹应助yyyyyyyy采纳,获得30
5秒前
机灵哲瀚完成签到,获得积分10
5秒前
水深三英尺完成签到,获得积分10
5秒前
科研通AI2S应助王水苗采纳,获得10
5秒前
5秒前
lili完成签到 ,获得积分10
5秒前
6秒前
Hello应助Rylee采纳,获得10
6秒前
Ya关闭了Ya文献求助
6秒前
6秒前
All_too_well发布了新的文献求助10
7秒前
7秒前
樾树完成签到,获得积分10
8秒前
9秒前
loeyyu发布了新的文献求助10
9秒前
9秒前
Yue_David完成签到,获得积分10
9秒前
10秒前
木木发布了新的文献求助10
10秒前
摇光发布了新的文献求助10
10秒前
王大可完成签到,获得积分10
11秒前
11秒前
科研小虫发布了新的文献求助10
11秒前
yyyyyyyy完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958814
求助须知:如何正确求助?哪些是违规求助? 3505069
关于积分的说明 11121961
捐赠科研通 3236515
什么是DOI,文献DOI怎么找? 1788844
邀请新用户注册赠送积分活动 871413
科研通“疑难数据库(出版商)”最低求助积分说明 802742