Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development

药物代谢 药品 药理学 体内 药物开发 药物发现 醛氧化酶 代谢物 药代动力学 新陈代谢 体外毒理学 生物 生物化学 生物技术 黄嘌呤氧化酶
作者
Siva Nageswara Rao Gajula,Tanaaz Navin Nathani,Rashmi Madhukar Patil,Sasikala Talari,Rajesh Sonti
出处
期刊:Drug Metabolism Reviews [Informa]
卷期号:54 (4): 427-448 被引量:10
标识
DOI:10.1080/03602532.2022.2144879
摘要

Aldehyde oxidase (AO) has garnered curiosity as a non-CYP metabolizing enzyme in drug development due to unexpected consequences such as toxic metabolite generation and high metabolic clearance resulting in the clinical failure of new drugs. Therefore, poor AO mediated clearance prediction in preclinical nonhuman species remains a significant obstacle in developing novel drugs. Various isoforms of AO, such as AOX1, AOX3, AOX3L1, and AOX4 exist across species, and different AO activity among humans influences the AO mediated drug metabolism. Therefore, carefully considering the unique challenges is essential in developing successful AO substrate drugs. The in vitro to in vivo extrapolation underpredicts AO mediated drug clearance due to the lack of reliable representative animal models, substrate-specific activity, and the discrepancy between absolute concentration and activity. An in vitro tool to extrapolate in vivo clearance using a yard-stick approach is provided to address the underprediction of AO mediated drug clearance. This approach uses a range of well-known AO drug substrates as calibrators for qualitative scaling new drugs into low, medium, or high clearance category drugs. So far, in vivo investigations on chimeric mice with humanized livers (humanized mice) have predicted AO mediated metabolism to the best extent. This review addresses the critical aspects of the drug discovery stage for AO metabolism studies, challenges faced in drug development, approaches to tackle AO mediated drug clearance's underprediction, and strategies to decrease the AO metabolism of drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111112完成签到,获得积分20
2秒前
淡定舞仙发布了新的文献求助10
3秒前
汉堡包应助许大脚采纳,获得10
5秒前
张大诚完成签到,获得积分10
5秒前
明亮的海冬完成签到 ,获得积分10
6秒前
含蓄大雁完成签到,获得积分10
6秒前
哈哈哈完成签到,获得积分10
6秒前
111112发布了新的文献求助10
7秒前
Owen应助胖大海采纳,获得10
7秒前
顾矜应助正直花生采纳,获得10
7秒前
王十完成签到,获得积分10
8秒前
8秒前
8秒前
烟花应助认真的新筠采纳,获得10
9秒前
高yq发布了新的文献求助20
10秒前
忐忑的篮球完成签到 ,获得积分10
10秒前
薄皮核桃发布了新的文献求助30
11秒前
Jasper应助binshier采纳,获得10
11秒前
11秒前
Sherry完成签到,获得积分10
12秒前
晚风发布了新的文献求助10
12秒前
Neptune完成签到,获得积分10
14秒前
杏仁核操纵子完成签到,获得积分10
15秒前
北栀完成签到,获得积分10
15秒前
18秒前
18秒前
18秒前
胖大海完成签到,获得积分10
19秒前
三叔完成签到,获得积分0
19秒前
斯文败类应助晚风采纳,获得10
20秒前
汉堡包应助33采纳,获得10
20秒前
21秒前
22秒前
paopao发布了新的文献求助10
22秒前
22秒前
许大脚发布了新的文献求助10
22秒前
胖大海发布了新的文献求助10
22秒前
红尘踏歌发布了新的文献求助10
24秒前
Wrong完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124422
求助须知:如何正确求助?哪些是违规求助? 2774782
关于积分的说明 7723789
捐赠科研通 2430217
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622023
版权声明 600297