材料科学
阳极
成核
过电位
钝化
枝晶(数学)
电镀(地质)
化学工程
沉积(地质)
阴极
金属
剥离(纤维)
电池(电)
电化学
法拉第效率
电极
冶金
复合材料
化学
物理化学
热力学
工程类
生物
古生物学
功率(物理)
几何学
图层(电子)
地球物理学
物理
有机化学
沉积物
地质学
数学
作者
Huige Chen,Zechu Guo,Huashan Wang,Weiyuan Huang,Feng Pan,Ziqi Wang
标识
DOI:10.1016/j.ensm.2022.11.013
摘要
Metallic Zn is a promising anode for aqueous Zn-ion batteries, but it suffers from dendrite formation, corrosion, and surface passivation during cycling that severely jeopardize the lifetime and charge/discharge kinetics of the battery. Herein, we propose a delayed nucleation strategy to improve the performance of Zn anodes. Through a liquid metal (LM) interlayer, the reduction and deposition of Zn are temporally and spatially separated, and thus fast Zn redox kinetics and dendrite-free Zn (002) deposition can be simultaneously achieved. The accordingly designed flexible anode (Zn@LM-AgT) demonstrates a stabilized Zn plating/stripping cycling over 700 h with a significantly reduced overpotential. When coupled with a vanadium-based cathode, the full cell delivers a sixtimes higher remaining capacity after 1000 cycles than the reference cell. Moreover, flexible batteries with good deformability are also fabricated with the Zn@LM-AgT anode, confirming the practicability of the LM interlayer. The delayed nucleation mechanism provides a novel approach to the high-performance metallic anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI