参数统计
溶解
计算机科学
蒙特卡罗方法
相似性(几何)
过程(计算)
参数化模型
统计
计量经济学
算法
数据挖掘
数学
人工智能
工程类
化学工程
操作系统
图像(数学)
作者
Tony Pourmohamad,Hon Keung Tony Ng
摘要
Dissolution studies are a fundamental component of pharmaceutical drug development, yet many studies rely upon the f1 and f2 model-independent approach that is not capable of accounting for uncertainty in parameter estimation when comparing dissolution profiles. In this paper, we deal with the issue of uncertainty quantification by proposing several model-dependent approaches for assessing the similarity of two dissolution profiles. We take a statistical modeling approach and allow the dissolution data to be modeled using either a Dirichlet distribution, gamma process model, or Wiener process model. These parametric forms are shown to be reasonable assumptions that are capable of modeling dissolution data well. Furthermore, based on a given statistical model, we are able to use the f1 difference factor and f2 similarity factor to test the equivalency of two dissolution profiles via bootstrap confidence intervals. Illustrations highlighting the success of our methods are provided for both Monte Carlo simulation studies, and real dissolution data sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI