STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification

超参数 计算机科学 人工智能 深度学习 规范化(社会学) 机器学习 精确性和召回率 召回 算法 模式识别(心理学) 人类学 语言学 哲学 社会学 程序设计语言
作者
Khaled Mohamad Almustafa,Akhilesh Kumar Sharma,Sachit Bhardwaj
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104357-104357
标识
DOI:10.1016/j.bspc.2022.104357
摘要

• This paper proposes the application of deep learning algorithms for diagnosing 14 major ophthalmological defects such as Hollenhorst Emboli, Arteriosclerotic Retinopathy etc. • In this study, multiple performance evaluation techniques such as Precision, Recall, F-1 Score, etc. are used to compare deep learning algorithms. • In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. Retina is the heart of an eye which generates electrical impulses due to light sensitivity. The vessel formation in human eye is an essential key for diagnosing ophthalmological conditions. This paper aims to diagnose ophthalmological conditions through deep learning models and provide advancements in early detection of ophthalmological conditions for proper treatment to protect patient’s vision, and for health care giver worldwide. STARE dataset is used for this study which consists over 385 retinal images of 14 ophthalmological defects such as BRAO, CRAO, etc. This dataset is further pre-processed over the techniques such as augmentation, normalization, etc for obtaining the best refined features for training deep learning algorithms. This paper broadly implements 5 deep learning algorithms i.e., EfficientNet, 3-Layers CNN, InceptionV2, ResNet-50, VGG-16. These models are trained number of times over tuned hyperparameters such as batch size etc and evaluated over 4 performance metrics over weighted averaged and macro averaged of precision, recall, F1-score, and accuracy to acquire the best performing model. EfficientNet performed the best with 98.43% accuracy, macro averaged f-1 score, recall, precision as 98.37%, 99.16%, 97.91% and weighted averaged f-1 score, recall, precision, as 98.50%, 98.43%, 98.82% over batch size 64. In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. The future work includes classifying more ophthalmological conditions, adding more parameters from blood, etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的觅荷完成签到 ,获得积分10
刚刚
rburbidn发布了新的文献求助10
1秒前
乐乐应助瑰慈采纳,获得10
2秒前
量子星尘发布了新的文献求助30
2秒前
研友_VZG7GZ应助like采纳,获得10
3秒前
科研韭菜发布了新的文献求助10
5秒前
6秒前
Suki发布了新的文献求助10
6秒前
6秒前
mirror应助xiang采纳,获得10
6秒前
深年完成签到,获得积分10
7秒前
慕青应助浮云采纳,获得10
9秒前
Everglow完成签到,获得积分10
9秒前
9秒前
6666应助djbj2022采纳,获得10
10秒前
山下梅子酒完成签到 ,获得积分10
11秒前
11秒前
Ava应助木子李采纳,获得10
11秒前
11秒前
6666应助ichia采纳,获得10
12秒前
科研通AI2S应助无语的代真采纳,获得10
12秒前
12秒前
13秒前
14秒前
嗯呐发布了新的文献求助10
16秒前
kk完成签到 ,获得积分10
16秒前
16秒前
善莫大焉发布了新的文献求助10
16秒前
小怪完成签到,获得积分10
16秒前
like发布了新的文献求助10
17秒前
秦风发布了新的文献求助10
18秒前
无奈的醉薇完成签到,获得积分10
19秒前
19秒前
邢江利发布了新的文献求助10
20秒前
Ava应助尤小玉采纳,获得10
20秒前
20秒前
20秒前
叶帆完成签到,获得积分20
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811