STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification

超参数 计算机科学 人工智能 深度学习 规范化(社会学) 机器学习 精确性和召回率 召回 算法 模式识别(心理学) 人类学 语言学 哲学 社会学 程序设计语言
作者
Khaled Mohamad Almustafa,Akhilesh Kumar Sharma,Sachit Bhardwaj
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104357-104357
标识
DOI:10.1016/j.bspc.2022.104357
摘要

• This paper proposes the application of deep learning algorithms for diagnosing 14 major ophthalmological defects such as Hollenhorst Emboli, Arteriosclerotic Retinopathy etc. • In this study, multiple performance evaluation techniques such as Precision, Recall, F-1 Score, etc. are used to compare deep learning algorithms. • In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. Retina is the heart of an eye which generates electrical impulses due to light sensitivity. The vessel formation in human eye is an essential key for diagnosing ophthalmological conditions. This paper aims to diagnose ophthalmological conditions through deep learning models and provide advancements in early detection of ophthalmological conditions for proper treatment to protect patient’s vision, and for health care giver worldwide. STARE dataset is used for this study which consists over 385 retinal images of 14 ophthalmological defects such as BRAO, CRAO, etc. This dataset is further pre-processed over the techniques such as augmentation, normalization, etc for obtaining the best refined features for training deep learning algorithms. This paper broadly implements 5 deep learning algorithms i.e., EfficientNet, 3-Layers CNN, InceptionV2, ResNet-50, VGG-16. These models are trained number of times over tuned hyperparameters such as batch size etc and evaluated over 4 performance metrics over weighted averaged and macro averaged of precision, recall, F1-score, and accuracy to acquire the best performing model. EfficientNet performed the best with 98.43% accuracy, macro averaged f-1 score, recall, precision as 98.37%, 99.16%, 97.91% and weighted averaged f-1 score, recall, precision, as 98.50%, 98.43%, 98.82% over batch size 64. In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. The future work includes classifying more ophthalmological conditions, adding more parameters from blood, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
结实蜡烛发布了新的文献求助10
2秒前
louyu完成签到 ,获得积分0
2秒前
我先睡了发布了新的文献求助10
2秒前
深情的迎海完成签到,获得积分10
2秒前
希柚完成签到 ,获得积分10
2秒前
4秒前
Giroro_roro发布了新的文献求助10
4秒前
陈开心完成签到,获得积分10
5秒前
花生发布了新的文献求助10
5秒前
5秒前
不秃头发布了新的文献求助20
5秒前
瞿亭龙完成签到,获得积分10
5秒前
闪闪的梦柏完成签到,获得积分10
5秒前
5秒前
xiaohu完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
神勇代荷完成签到,获得积分10
7秒前
7秒前
realyxy完成签到,获得积分20
8秒前
满天星发布了新的文献求助10
8秒前
薛定谔的猫完成签到,获得积分10
10秒前
留胡子的霖完成签到,获得积分10
10秒前
心灵美的白卉完成签到,获得积分20
10秒前
ZZ0901完成签到,获得积分10
10秒前
10秒前
要减肥含灵完成签到,获得积分10
11秒前
小垚完成签到,获得积分10
11秒前
spy发布了新的文献求助10
11秒前
12秒前
ddddd发布了新的文献求助10
12秒前
lw发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
zz发布了新的文献求助20
13秒前
dang完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620