已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification

超参数 计算机科学 人工智能 深度学习 规范化(社会学) 机器学习 精确性和召回率 召回 算法 模式识别(心理学) 人类学 语言学 哲学 社会学 程序设计语言
作者
Khaled Mohamad Almustafa,Akhilesh Kumar Sharma,Sachit Bhardwaj
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104357-104357
标识
DOI:10.1016/j.bspc.2022.104357
摘要

• This paper proposes the application of deep learning algorithms for diagnosing 14 major ophthalmological defects such as Hollenhorst Emboli, Arteriosclerotic Retinopathy etc. • In this study, multiple performance evaluation techniques such as Precision, Recall, F-1 Score, etc. are used to compare deep learning algorithms. • In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. Retina is the heart of an eye which generates electrical impulses due to light sensitivity. The vessel formation in human eye is an essential key for diagnosing ophthalmological conditions. This paper aims to diagnose ophthalmological conditions through deep learning models and provide advancements in early detection of ophthalmological conditions for proper treatment to protect patient’s vision, and for health care giver worldwide. STARE dataset is used for this study which consists over 385 retinal images of 14 ophthalmological defects such as BRAO, CRAO, etc. This dataset is further pre-processed over the techniques such as augmentation, normalization, etc for obtaining the best refined features for training deep learning algorithms. This paper broadly implements 5 deep learning algorithms i.e., EfficientNet, 3-Layers CNN, InceptionV2, ResNet-50, VGG-16. These models are trained number of times over tuned hyperparameters such as batch size etc and evaluated over 4 performance metrics over weighted averaged and macro averaged of precision, recall, F1-score, and accuracy to acquire the best performing model. EfficientNet performed the best with 98.43% accuracy, macro averaged f-1 score, recall, precision as 98.37%, 99.16%, 97.91% and weighted averaged f-1 score, recall, precision, as 98.50%, 98.43%, 98.82% over batch size 64. In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. The future work includes classifying more ophthalmological conditions, adding more parameters from blood, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
B612小行星完成签到 ,获得积分10
1秒前
小蘑菇应助紫荆采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
爱静静应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助康康采纳,获得10
7秒前
Wan完成签到,获得积分20
8秒前
大个应助要减肥金针菇采纳,获得10
13秒前
汤汤完成签到 ,获得积分10
15秒前
小蘑菇应助Wan采纳,获得10
15秒前
阿紫吖完成签到 ,获得积分10
19秒前
20秒前
26秒前
动听靖完成签到 ,获得积分10
26秒前
26秒前
万能图书馆应助dasaber采纳,获得10
28秒前
orixero应助小小鹅采纳,获得10
29秒前
30秒前
你你你完成签到,获得积分10
31秒前
32秒前
可爱的函函应助RYY采纳,获得10
32秒前
阿鑫完成签到 ,获得积分10
32秒前
紫荆发布了新的文献求助10
33秒前
oscar完成签到,获得积分10
34秒前
36秒前
清楚或青月完成签到 ,获得积分0
37秒前
lily88发布了新的文献求助10
37秒前
简单的熊猫完成签到,获得积分10
40秒前
40秒前
41秒前
奋斗千秋发布了新的文献求助10
42秒前
liu发布了新的文献求助10
42秒前
43秒前
634301059发布了新的文献求助10
43秒前
43秒前
44秒前
wt发布了新的文献求助10
45秒前
46秒前
烟花应助小短腿飞行员采纳,获得10
49秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793439
关于积分的说明 7806660
捐赠科研通 2449725
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309