STARC: Deep learning Algorithms’ modelling for STructured analysis of retina classification

超参数 计算机科学 人工智能 深度学习 规范化(社会学) 机器学习 精确性和召回率 召回 算法 模式识别(心理学) 人类学 语言学 哲学 社会学 程序设计语言
作者
Khaled Mohamad Almustafa,Akhilesh Kumar Sharma,Sachit Bhardwaj
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104357-104357
标识
DOI:10.1016/j.bspc.2022.104357
摘要

• This paper proposes the application of deep learning algorithms for diagnosing 14 major ophthalmological defects such as Hollenhorst Emboli, Arteriosclerotic Retinopathy etc. • In this study, multiple performance evaluation techniques such as Precision, Recall, F-1 Score, etc. are used to compare deep learning algorithms. • In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. Retina is the heart of an eye which generates electrical impulses due to light sensitivity. The vessel formation in human eye is an essential key for diagnosing ophthalmological conditions. This paper aims to diagnose ophthalmological conditions through deep learning models and provide advancements in early detection of ophthalmological conditions for proper treatment to protect patient’s vision, and for health care giver worldwide. STARE dataset is used for this study which consists over 385 retinal images of 14 ophthalmological defects such as BRAO, CRAO, etc. This dataset is further pre-processed over the techniques such as augmentation, normalization, etc for obtaining the best refined features for training deep learning algorithms. This paper broadly implements 5 deep learning algorithms i.e., EfficientNet, 3-Layers CNN, InceptionV2, ResNet-50, VGG-16. These models are trained number of times over tuned hyperparameters such as batch size etc and evaluated over 4 performance metrics over weighted averaged and macro averaged of precision, recall, F1-score, and accuracy to acquire the best performing model. EfficientNet performed the best with 98.43% accuracy, macro averaged f-1 score, recall, precision as 98.37%, 99.16%, 97.91% and weighted averaged f-1 score, recall, precision, as 98.50%, 98.43%, 98.82% over batch size 64. In this study, the performance compared with the existing literature achieved higher accuracy due to the unique model and its configuration, hyperparameter tuning and pre-processing techniques for the 14 classes of retinal defects. The future work includes classifying more ophthalmological conditions, adding more parameters from blood, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ark861023完成签到,获得积分10
1秒前
YY完成签到 ,获得积分10
1秒前
科研通AI5应助kidult采纳,获得10
2秒前
2秒前
玛卡巴卡完成签到,获得积分10
2秒前
寒冷无色完成签到,获得积分10
2秒前
浅辰完成签到,获得积分10
4秒前
5秒前
6秒前
1752795896完成签到,获得积分10
6秒前
鱿鱼炒黄瓜完成签到,获得积分10
6秒前
柔弱的老三完成签到 ,获得积分10
6秒前
Star完成签到 ,获得积分10
6秒前
GongSyi完成签到 ,获得积分10
6秒前
Almond完成签到,获得积分10
7秒前
郝天鑫完成签到,获得积分10
9秒前
JoaquinH完成签到,获得积分10
9秒前
析渊完成签到,获得积分10
9秒前
xiaowang0710完成签到,获得积分10
9秒前
10秒前
张小度ever完成签到 ,获得积分10
10秒前
哒哒完成签到,获得积分10
10秒前
11秒前
cc完成签到,获得积分10
11秒前
乐观的问兰完成签到 ,获得积分10
12秒前
hkh发布了新的文献求助10
12秒前
yao完成签到,获得积分10
12秒前
13秒前
王正浩完成签到 ,获得积分10
14秒前
14秒前
等待断秋完成签到,获得积分10
14秒前
看文献看到秃头完成签到,获得积分10
15秒前
祺屿梦完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
花开的声音1217完成签到,获得积分10
18秒前
启航完成签到,获得积分10
19秒前
jianglili完成签到,获得积分10
19秒前
yw完成签到,获得积分10
20秒前
握瑾怀瑜完成签到 ,获得积分0
20秒前
机智馒头完成签到 ,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328