Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms

射血分数 接收机工作特性 左束支阻滞 医学 心房颤动 内科学 心脏病学 人工智能 心力衰竭 考试(生物学) 机器学习 计算机科学 古生物学 生物
作者
Ryuichiro Yagi,Shinichi Goto,Yoshinori Katsumata,Calum A. MacRae,Rahul C. Deo
出处
期刊:European heart journal [Oxford University Press]
卷期号:3 (4): 654-657 被引量:15
标识
DOI:10.1093/ehjdh/ztac065
摘要

Abstract Aim Left ventricular systolic dysfunction (LVSD) carries an increased risk for overt heart failure and mortality, yet treatable to mitigate disease progression. An artificial intelligence (AI)-enabled 12-lead electrocardiogram (ECG) model demonstrated promise in LVSD screening, but the performance dropped unexpectedly in external validation. We thus sought to train de novo models for LVSD detection and investigated their performance across multiple institutions and across a broader set of patient strata. Methods and results ECGs taken within 14 days of an echocardiogram were obtained from four academic hospitals (three in the United States and one in Japan). Four AI models were trained to detect patients with ejection fraction (EF) <40% using ECGs from each of the four institutions. All the models were then evaluated on the held-out test data set from the same institution and data from the three external institutions. Subgroup analyses stratified by patient characteristics and common ECG abnormalities were performed. A total of 221 846 ECGs were identified from the 4 institutions. While the Brigham and Women’s Hospital (BWH)-trained and Keio-trained models yielded similar accuracy on their internal test data [area under the receiver operating curve (AUROC) 0.913 and 0.914, respectively], external validity was worse for the Keio-trained model (AUROC: 0.905–0.915 for BWH trained and 0.849–0.877 for Keio-trained model). Although ECG abnormalities including atrial fibrillation, left bundle branch block, and paced rhythm-reduced detection, the models performed robustly across patient characteristics and other ECG features. Conclusion While using the same model architecture, different data sets produced models with different performances for detecting low-EF highlighting the importance of external validation and extensive stratification analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
moumou应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
moumou应助科研通管家采纳,获得10
3秒前
Tong应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
慕苡完成签到,获得积分10
3秒前
3秒前
3秒前
爆米花应助QinQin采纳,获得10
4秒前
善学以致用应助5High_0采纳,获得10
4秒前
IrisYu发布了新的文献求助10
4秒前
kaka发布了新的文献求助10
4秒前
瑾予淇安发布了新的文献求助10
5秒前
5秒前
5秒前
彭于晏应助欣喜宛亦采纳,获得10
6秒前
冯博伦发布了新的文献求助10
7秒前
33应助留猪采纳,获得10
7秒前
木虫完成签到,获得积分10
7秒前
嘟嘟完成签到 ,获得积分10
7秒前
8秒前
神龙尊者发布了新的文献求助10
9秒前
FashionBoy应助宋灵竹采纳,获得30
9秒前
9秒前
9秒前
Dryuwei发布了新的文献求助10
10秒前
小艾完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助YHY采纳,获得10
10秒前
搞怪夏蓉完成签到,获得积分10
11秒前
星空发布了新的文献求助10
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466417
求助须知:如何正确求助?哪些是违规求助? 3059200
关于积分的说明 9065226
捐赠科研通 2749643
什么是DOI,文献DOI怎么找? 1508690
科研通“疑难数据库(出版商)”最低求助积分说明 696996
邀请新用户注册赠送积分活动 696733