已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey on ensemble learning under the era of deep learning

深度学习 人工智能 集成学习 计算机科学 机器学习 人工神经网络 集合预报 深信不疑网络 深层神经网络 维数之咒
作者
Yongquan Yang,Haijun Lv,Ning Chen
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (6): 5545-5589 被引量:43
标识
DOI:10.1007/s10462-022-10283-5
摘要

Due to the dominant position of deep learning (mostly deep neural networks) in various artificial intelligence applications, recently, ensemble learning based on deep neural networks (ensemble deep learning) has shown significant performances in improving the generalization of learning system. However, since modern deep neural networks usually have millions to billions of parameters, the time and space overheads for training multiple base deep learners and testing with the ensemble deep learner are far greater than that of traditional ensemble learning. Though several algorithms of fast ensemble deep learning have been proposed to promote the deployment of ensemble deep learning in some applications, further advances still need to be made for many applications in specific fields, where the developing time and computing resources are usually restricted or the data to be processed is of large dimensionality. An urgent problem needs to be solved is how to take the significant advantages of ensemble deep learning while reduce the required expenses so that many more applications in specific fields can benefit from it. For the alleviation of this problem, it is essential to know about how ensemble learning has developed under the era of deep learning. Thus, in this article, we present fundamental discussions focusing on data analyses of published works, methodologies, recent advances and unattainability of traditional ensemble learning and ensemble deep learning. We hope this article will be helpful to realize the intrinsic problems and technical challenges faced by future developments of ensemble learning under the era of deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助快乐抽屉采纳,获得10
1秒前
詹卫卫完成签到 ,获得积分10
2秒前
余晓雨发布了新的文献求助10
2秒前
777发布了新的文献求助10
2秒前
3秒前
6秒前
迷路的啤酒完成签到 ,获得积分10
6秒前
Jasper应助坚强的严青采纳,获得10
8秒前
科研通AI2S应助圆圆采纳,获得10
9秒前
蓬莱塔图完成签到 ,获得积分10
13秒前
777完成签到,获得积分10
13秒前
不安山芙发布了新的文献求助10
13秒前
13秒前
壮观溪流完成签到 ,获得积分10
17秒前
liweiDr发布了新的文献求助10
20秒前
26秒前
Flicker完成签到 ,获得积分10
26秒前
科研通AI2S应助renpp822采纳,获得10
27秒前
英姑应助777采纳,获得10
28秒前
JianminLuo发布了新的文献求助10
29秒前
29秒前
絮语发布了新的文献求助30
32秒前
32秒前
科研通AI2S应助123采纳,获得30
32秒前
zyfqpc应助余晓雨采纳,获得10
33秒前
很在乎完成签到 ,获得积分10
33秒前
郝好完成签到 ,获得积分10
36秒前
Owen应助科研通管家采纳,获得10
36秒前
传奇3应助科研通管家采纳,获得10
36秒前
彭于晏应助科研通管家采纳,获得10
37秒前
CodeCraft应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
研友_VZG7GZ应助墨墨采纳,获得10
41秒前
44秒前
45秒前
天真的天与完成签到,获得积分20
47秒前
yyuuaa完成签到,获得积分10
50秒前
50秒前
51秒前
asd发布了新的文献求助10
52秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139334
求助须知:如何正确求助?哪些是违规求助? 2790231
关于积分的说明 7794518
捐赠科研通 2446658
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109