Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Russell采纳,获得10
1秒前
王煊发布了新的文献求助10
1秒前
YHold完成签到,获得积分10
1秒前
宁静致远完成签到,获得积分10
2秒前
ania完成签到,获得积分10
2秒前
竞燃查无此人完成签到,获得积分10
2秒前
邵燚铭完成签到 ,获得积分10
2秒前
Mae完成签到 ,获得积分10
2秒前
情怀应助葡萄干采纳,获得10
2秒前
斯文凡阳完成签到,获得积分10
3秒前
元宝团子完成签到,获得积分10
3秒前
3秒前
kelaibing完成签到,获得积分10
3秒前
charry完成签到,获得积分10
4秒前
xiaotianli完成签到,获得积分10
4秒前
soar完成签到,获得积分10
5秒前
6秒前
7秒前
wy完成签到,获得积分10
8秒前
ChenXinde完成签到,获得积分10
8秒前
王文茹完成签到,获得积分20
9秒前
情怀应助MMashiro采纳,获得10
9秒前
bbboy发布了新的文献求助20
9秒前
晚风完成签到 ,获得积分10
9秒前
长情的一刀完成签到,获得积分10
9秒前
shen发布了新的文献求助10
10秒前
11秒前
女神金完成签到,获得积分10
11秒前
脑洞疼应助ramu采纳,获得10
11秒前
斯文败类应助昵称采纳,获得10
11秒前
12秒前
12秒前
光亮的灭绝完成签到,获得积分10
12秒前
吉祥应助小小酥采纳,获得30
13秒前
Yzz完成签到,获得积分10
13秒前
luckyd完成签到 ,获得积分0
14秒前
不安的元霜完成签到,获得积分10
14秒前
14秒前
自由的信仰完成签到,获得积分10
14秒前
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180142
求助须知:如何正确求助?哪些是违规求助? 2830541
关于积分的说明 7978378
捐赠科研通 2492125
什么是DOI,文献DOI怎么找? 1329213
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954