Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高芷发布了新的文献求助10
刚刚
伈X发布了新的文献求助10
1秒前
科研八戒完成签到,获得积分10
1秒前
1秒前
香山叶正红完成签到 ,获得积分10
1秒前
1秒前
2秒前
Roche完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
Owen应助xiaoxiao采纳,获得10
5秒前
5秒前
Profeto应助zx采纳,获得10
6秒前
huiry完成签到,获得积分10
6秒前
蘑菇屋应助lyn采纳,获得10
6秒前
6秒前
积极的绿竹完成签到,获得积分10
7秒前
GJL完成签到,获得积分10
7秒前
霍笑白完成签到,获得积分10
8秒前
nwds发布了新的文献求助10
8秒前
欢喜火关注了科研通微信公众号
8秒前
WSGQT发布了新的文献求助10
8秒前
8秒前
Kyrie完成签到,获得积分10
9秒前
9秒前
麻花完成签到,获得积分10
9秒前
10秒前
糖霜烤面包完成签到,获得积分10
11秒前
11秒前
chen完成签到,获得积分10
12秒前
12秒前
chen发布了新的文献求助10
12秒前
蓝兰完成签到,获得积分20
12秒前
13秒前
mumu关注了科研通微信公众号
13秒前
baihehuakai发布了新的文献求助10
13秒前
孤独绿柏发布了新的文献求助10
14秒前
土豆子完成签到,获得积分10
14秒前
CipherSage应助慕慕倾采纳,获得10
14秒前
14秒前
gzslwddhjx完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267