Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实语海完成签到,获得积分10
刚刚
1秒前
小明完成签到 ,获得积分10
1秒前
燕子发布了新的文献求助10
2秒前
我我我完成签到,获得积分10
2秒前
彩虹完成签到,获得积分10
4秒前
樱桃汽水完成签到,获得积分10
5秒前
热情嘉懿完成签到,获得积分10
11秒前
szcyxzh完成签到,获得积分10
13秒前
甜美丹蝶关注了科研通微信公众号
14秒前
小青椒完成签到,获得积分0
19秒前
Freya发布了新的文献求助20
19秒前
Brave发布了新的文献求助10
20秒前
务实的一斩完成签到 ,获得积分10
25秒前
29秒前
克林沙星完成签到,获得积分10
31秒前
甜美丹蝶发布了新的文献求助10
32秒前
Freya完成签到,获得积分10
33秒前
jackhlj完成签到,获得积分10
34秒前
微光完成签到,获得积分10
36秒前
小石头完成签到,获得积分10
36秒前
天天快乐应助燕子采纳,获得10
38秒前
sa0022完成签到,获得积分10
38秒前
老实验人完成签到,获得积分10
43秒前
Yiling完成签到,获得积分10
44秒前
46秒前
hdbys发布了新的文献求助30
47秒前
哈哈完成签到,获得积分10
48秒前
研友_VZG7GZ应助moral采纳,获得10
49秒前
lm完成签到,获得积分10
50秒前
王能行完成签到,获得积分10
52秒前
大力的远望完成签到 ,获得积分10
53秒前
123完成签到 ,获得积分20
55秒前
今天晚上早点睡完成签到 ,获得积分10
56秒前
56秒前
dahuihui完成签到,获得积分10
56秒前
yinghuo完成签到,获得积分10
57秒前
燕子发布了新的文献求助10
1分钟前
清沧炽魂完成签到,获得积分10
1分钟前
燕子完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565186
求助须知:如何正确求助?哪些是违规求助? 4650041
关于积分的说明 14689651
捐赠科研通 4591914
什么是DOI,文献DOI怎么找? 2519400
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463139