亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fsy123发布了新的文献求助10
4秒前
Raunio完成签到,获得积分10
5秒前
linman驳回了qc应助
6秒前
reds发布了新的文献求助10
11秒前
24秒前
鹏笑发布了新的文献求助10
27秒前
aDD关注了科研通微信公众号
30秒前
38秒前
鹏笑完成签到,获得积分10
38秒前
小时了了发布了新的文献求助10
43秒前
赵佳铃发布了新的文献求助10
44秒前
深情安青应助宗友绿采纳,获得10
44秒前
47秒前
50秒前
aDD发布了新的文献求助10
52秒前
宗友绿发布了新的文献求助10
55秒前
赵佳铃完成签到,获得积分10
1分钟前
小二郎应助宗友绿采纳,获得10
1分钟前
1分钟前
传奇3应助宗友绿采纳,获得10
1分钟前
活泼稀发布了新的文献求助10
1分钟前
香蕉新儿完成签到,获得积分10
1分钟前
雪梨101完成签到,获得积分10
1分钟前
1分钟前
笨笨完成签到,获得积分10
1分钟前
雪梨101发布了新的文献求助10
1分钟前
PDE完成签到,获得积分10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
江姜酱先生完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助雪梨101采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
实干的多春鱼完成签到,获得积分10
1分钟前
宗友绿发布了新的文献求助10
1分钟前
活泼稀完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253853
求助须知:如何正确求助?哪些是违规求助? 4417068
关于积分的说明 13750902
捐赠科研通 4289590
什么是DOI,文献DOI怎么找? 2353566
邀请新用户注册赠送积分活动 1350271
关于科研通互助平台的介绍 1310288