Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
SwampMan完成签到,获得积分10
2秒前
聪慧石头发布了新的文献求助10
2秒前
jzt12138发布了新的文献求助10
3秒前
优雅若蕊发布了新的文献求助10
3秒前
Junly发布了新的文献求助10
3秒前
3秒前
Jasper应助难过的谷芹采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
null应助科研通管家采纳,获得10
4秒前
俊逸忻应助科研通管家采纳,获得10
4秒前
CodeCraft应助沈世尧采纳,获得10
4秒前
MIZU应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
无极微光应助超级的冷松采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
吃瓜少女应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
null应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
俊逸忻应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6.1应助11采纳,获得10
6秒前
MIZU应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108