Utility of a Clinically Guided Data-Driven Approach for Predicting Breast Cancer Complications: An Application Using a Population-Based Claims Data Set

Lasso(编程语言) 逻辑回归 医学 随机森林 乳腺癌 接收机工作特性 人口 决策树 预测建模 数据集 弹性网正则化 不利影响 回归 统计 癌症 机器学习 肿瘤科 内科学 计算机科学 数学 环境卫生 万维网
作者
Daniel Pichardo,Russ Michael,Michele E. Mercer,Natalia Korina,Eberechukwu Onukwugha
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/cci.21.00191
摘要

With earlier detection and an increasing number of breast cancer (BCa) survivors, more women are living with side effects of BCa treatment. A predictive approach to studying treatment-related adverse events (AEs) may generate proactive strategies; however, many studies are descriptive in nature. Focusing on short-term AEs, we determine the performance of prediction models of disease- or treatment-related AEs among women diagnosed with BCa.We used administrative claims data from the Blue Health Intelligence National Data Repository. The study sample included female individuals age 18 years and older who were diagnosed with BCa and received cancer-directed treatment between January 1, 2014, and August 1, 2019. Using the information available in the claims data, we constructed longitudinal patient histories and identified disease- and treatment-related AEs occurring within 6 months of treatment. The following prediction models were developed: logistic regression, Lasso regression, gradient boosted tree (GBT), and random forest (RF). We compared models using the area under the receiver operating characteristic curve and its CI, among other metrics.Data were extracted for 267,473 members meeting study inclusion criteria. The area under the curve for the logistic regression model was 0.82 (0.82-0.86), compared with 0.89 (0.87-0.90) for the Lasso, 0.91 (0.89-0.93) for the GBT, and 0.90 (0.93-0.89) for the RF models. The sensitivity was 0.96 for the GBT, Lasso, and RF models, whereas the specificity was 0.42, 0.44, and 0.39 for the GBT, Lasso, and RF models, respectively. Positive predictive values were 0.96 across all three models.Prediction models developed using big data methods and grounded in a clinically guided framework have the potential to reliably predict short-term treatment-related AEs among women diagnosed with BCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零点起步发布了新的文献求助10
1秒前
故意的傲玉应助Ll采纳,获得10
1秒前
斯文败类应助xiuxiu_27采纳,获得10
1秒前
胖子完成签到,获得积分10
1秒前
王巧巧完成签到,获得积分10
1秒前
tangsuyun发布了新的文献求助10
2秒前
祝顺遂发布了新的文献求助10
2秒前
Seven发布了新的文献求助10
2秒前
土拨鼠完成签到 ,获得积分10
3秒前
邢夏之发布了新的文献求助10
3秒前
漂亮芹菜完成签到,获得积分10
3秒前
ZXH完成签到,获得积分10
3秒前
Evelyn完成签到 ,获得积分10
3秒前
习习应助sb采纳,获得10
4秒前
4秒前
4秒前
斯文败类应助liu采纳,获得10
5秒前
5秒前
gy发布了新的文献求助10
5秒前
7秒前
pinging应助566采纳,获得10
7秒前
乾明少侠完成签到 ,获得积分10
8秒前
8秒前
开心重要完成签到,获得积分10
9秒前
云魂完成签到,获得积分10
9秒前
hxy808完成签到,获得积分10
9秒前
小林太郎应助Young采纳,获得20
9秒前
10秒前
Helical发布了新的文献求助30
10秒前
风趣的天真完成签到,获得积分10
10秒前
虾仁发布了新的文献求助10
10秒前
搜集达人应助gww采纳,获得10
10秒前
SciGPT应助小橙子采纳,获得30
10秒前
跨材料完成签到,获得积分10
11秒前
WxChen发布了新的文献求助10
12秒前
祝顺遂完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
tianle完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759