The Effect of Surface-Abundant Hydrogen Bonding on the Electrolyte Reduction for the Stable SEI in Lithium Metal Batteries

电解质 阳极 法拉第效率 硝酸锂 锂(药物) 化学工程 金属 化学 无机化学 离子电导率 材料科学 电极 离子键合 离子 有机化学 医学 物理化学 工程类 内分泌学
作者
Subin Kim,KwangSup Eom
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (64): 2318-2318
标识
DOI:10.1149/ma2022-02642318mtgabs
摘要

Lithium (Li) metal anodes (LMAs) have been attracted world-wide attention as an ideal anode because of its extra-high theoretical capacity (3860 mAh g -1 ) and low electrode potential (-3.04 V vs S.H.E.). However, the dendritic growth of Li and low Coulombic efficiency (CE) are still hindering their practical uses [1]. To date, numerous methods such as construction of artificial solid electrolyte layer (ASEI) [2], adoption of 3D current collector [3], and tuning of the electrolyte composition [4] have been proposed to prevent Li dendrite growth and increase the CE. Among them, introducing functional additives is one of the most efficient approaches for practical application considering its cost-effectiveness. Until now, various functional additives were introduced to form stable and robust SEI layer in LMBs [4]. Among them, lithium nitrate (LiNO 3 ) is considered as the most efficient electrolyte additive, ensuring high coulombic efficiency (CE) as well as long lifespan of LMBs. When LiNO 3 is dissolved in the electrolyte, NO 3 - anions are mainly reduced to form inorganic species such as Li 3 N, which has a high ionic conductivity and mechanical strength. As such species contribute to the construction of the robust and ionic-conductive SEI layer, and hence the reduction of NO 3 - is important for stable Li cycling. In this regard, many researchers have focused on increasing reduction of NO 3 - by using high-concentration LiNO 3 [4], or adding solubilizer to increase more NO 3 - in the electrolyte [5]. However, those remedies are still insufficient because most of them increase the viscosity of electrolyte leading to low kinetics, hence a novel and more efficient way to increase NO 3 - reduction is needed for practical application. On the other hand, recent researches have reported that the preferential reduction of specific anions is possible by regulation of inner Helmholtz plane (IHP) structure [6]. For instance, Huang et al. reported that intermolecular force between PF 6 - anions and surface adsorbent tris(trimethylsilyl) borate could derive in PF 6 - -abundant IHP, successfully resulted in LiF-rich SEI layer to increase the stability of LMA [6]. Inspired by those works, we expected that NO 3 - -derived SEI layer would be achieved by using surface adsorbent showing strong intermolecular interaction with NO 3 - . In this context, we introduce the adoption of thiourea (TU) as a catalytic additive for the LiNO 3 reduction during the SEI formation. Due to its unique molecular structure, addition of TU could induce NO 3 - derived SEI layer. Firstly, TU could adsorb onto metallic surface by its S atom. Meanwhile, thiourea could form hydrogen bonding with NO 3 - anion by its N-H bonds [7]. Hence in the presence of TU, we suggest that NO 3 - -abundant electrode surface would be achieved by interaction between TU-NO 3 - , resulting in Li 3 N-rich SEI layer. The adsorption behavior of TU on the Cu electrode was investigated by potential of zero charge (PZC) measurement ( Figure 1(a)) . As the TU concentration increases, PZC decreases, indicating more surface coverage by TU. Figure 1(b) shows 1 H NMR spectra of electrolytes with different components. Upshift displacement of N-H bond of TU were detected after addition of DME and LiTFSI, indicating that intramolecular H-bond of TU were weakened. By contrast, downshift displacement appeared when LiNO 3 was added, which means NO 3 - would form strong hydrogen bonding with TU. Furthermore, linear scanning voltammetry (LSV) curves at different concentration of TU were measured to investigate the effect of TU on electrolyte reduction ( Figure 1(c) ). The distinct peaks at 1.6 V and 1.3 V in the cell with 5 wt% LiNO 3 indicate reduction of LiNO 3 and LiTFSI, respectively. Interestingly, in the presence of TU, negative potential shift and increased current of those redox peaks were shown, indicating that the TU significantly increases the LiNO 3 reduction. Importantly, from the XPS analysis, it was found that more abundant Li 3 N components are in the ASEI layer with TU than that without TU, implying that TU accelerates the reduction of LiNO 3 ( Figure 2(a-b)). As a result, Li|Cu@ASEI with TU shows better cyclability and higher average CE of 96.44% during 80 cycles compared to Li|Cu@NSEI and Li|Cu@ASEI w/o TU ( Figure 3 ). In addition, morphological and chemical investigation on the favorable ASEI layers assisted by TU, and its electrochemical performance in LMBs will be discussed in this presentation. [1] Cheng et al, Chem. Rev , 117 , 10403, 2017. [2] Lopez Jeffrey, et al. JACS 140.37 (2018): 11735-11744. [3] Yang Chun-Peng et al. Nature communications 6.1 (2015): 1-9. [4] Kang et al. Journal of Power Sources 490 (2021): 229504. [5] Zhang et al. Advanced Materials 32.24 (2020): 2001740. [6] Huang et al. Angewandte Chemie. 60.35 (2021): 19232-19240. [7] Nishizawa et al. Tetrahedron letters 36.36 (1995): 6483-6486. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
RC_Wang应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
赘婿应助Quzhengkai采纳,获得10
2秒前
sutharsons应助科研通管家采纳,获得30
2秒前
李爱国应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
CodeCraft应助清新的苑博采纳,获得10
4秒前
所所应助Chen采纳,获得10
5秒前
7秒前
7秒前
goldenfleece发布了新的文献求助10
7秒前
怕黑的钥匙完成签到 ,获得积分10
7秒前
zhangsf88完成签到,获得积分10
7秒前
科研通AI5应助科研小能手采纳,获得10
7秒前
乐乐应助热情芷荷采纳,获得10
8秒前
想发sci完成签到,获得积分10
8秒前
kaifeiQi完成签到,获得积分10
8秒前
共享精神应助Elsa采纳,获得10
8秒前
8秒前
Owen应助怎么可能会凉采纳,获得10
9秒前
小马甲应助ATAYA采纳,获得10
10秒前
溜溜发布了新的文献求助10
12秒前
12秒前
怕黑的钥匙关注了科研通微信公众号
12秒前
CipherSage应助小梁要加油采纳,获得10
13秒前
杰克发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808