The Effect of Surface-Abundant Hydrogen Bonding on the Electrolyte Reduction for the Stable SEI in Lithium Metal Batteries

电解质 阳极 法拉第效率 硝酸锂 锂(药物) 化学工程 金属 化学 无机化学 离子电导率 材料科学 电极 离子键合 离子 有机化学 物理化学 内分泌学 工程类 医学
作者
Subin Kim,KwangSup Eom
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (64): 2318-2318
标识
DOI:10.1149/ma2022-02642318mtgabs
摘要

Lithium (Li) metal anodes (LMAs) have been attracted world-wide attention as an ideal anode because of its extra-high theoretical capacity (3860 mAh g -1 ) and low electrode potential (-3.04 V vs S.H.E.). However, the dendritic growth of Li and low Coulombic efficiency (CE) are still hindering their practical uses [1]. To date, numerous methods such as construction of artificial solid electrolyte layer (ASEI) [2], adoption of 3D current collector [3], and tuning of the electrolyte composition [4] have been proposed to prevent Li dendrite growth and increase the CE. Among them, introducing functional additives is one of the most efficient approaches for practical application considering its cost-effectiveness. Until now, various functional additives were introduced to form stable and robust SEI layer in LMBs [4]. Among them, lithium nitrate (LiNO 3 ) is considered as the most efficient electrolyte additive, ensuring high coulombic efficiency (CE) as well as long lifespan of LMBs. When LiNO 3 is dissolved in the electrolyte, NO 3 - anions are mainly reduced to form inorganic species such as Li 3 N, which has a high ionic conductivity and mechanical strength. As such species contribute to the construction of the robust and ionic-conductive SEI layer, and hence the reduction of NO 3 - is important for stable Li cycling. In this regard, many researchers have focused on increasing reduction of NO 3 - by using high-concentration LiNO 3 [4], or adding solubilizer to increase more NO 3 - in the electrolyte [5]. However, those remedies are still insufficient because most of them increase the viscosity of electrolyte leading to low kinetics, hence a novel and more efficient way to increase NO 3 - reduction is needed for practical application. On the other hand, recent researches have reported that the preferential reduction of specific anions is possible by regulation of inner Helmholtz plane (IHP) structure [6]. For instance, Huang et al. reported that intermolecular force between PF 6 - anions and surface adsorbent tris(trimethylsilyl) borate could derive in PF 6 - -abundant IHP, successfully resulted in LiF-rich SEI layer to increase the stability of LMA [6]. Inspired by those works, we expected that NO 3 - -derived SEI layer would be achieved by using surface adsorbent showing strong intermolecular interaction with NO 3 - . In this context, we introduce the adoption of thiourea (TU) as a catalytic additive for the LiNO 3 reduction during the SEI formation. Due to its unique molecular structure, addition of TU could induce NO 3 - derived SEI layer. Firstly, TU could adsorb onto metallic surface by its S atom. Meanwhile, thiourea could form hydrogen bonding with NO 3 - anion by its N-H bonds [7]. Hence in the presence of TU, we suggest that NO 3 - -abundant electrode surface would be achieved by interaction between TU-NO 3 - , resulting in Li 3 N-rich SEI layer. The adsorption behavior of TU on the Cu electrode was investigated by potential of zero charge (PZC) measurement ( Figure 1(a)) . As the TU concentration increases, PZC decreases, indicating more surface coverage by TU. Figure 1(b) shows 1 H NMR spectra of electrolytes with different components. Upshift displacement of N-H bond of TU were detected after addition of DME and LiTFSI, indicating that intramolecular H-bond of TU were weakened. By contrast, downshift displacement appeared when LiNO 3 was added, which means NO 3 - would form strong hydrogen bonding with TU. Furthermore, linear scanning voltammetry (LSV) curves at different concentration of TU were measured to investigate the effect of TU on electrolyte reduction ( Figure 1(c) ). The distinct peaks at 1.6 V and 1.3 V in the cell with 5 wt% LiNO 3 indicate reduction of LiNO 3 and LiTFSI, respectively. Interestingly, in the presence of TU, negative potential shift and increased current of those redox peaks were shown, indicating that the TU significantly increases the LiNO 3 reduction. Importantly, from the XPS analysis, it was found that more abundant Li 3 N components are in the ASEI layer with TU than that without TU, implying that TU accelerates the reduction of LiNO 3 ( Figure 2(a-b)). As a result, Li|Cu@ASEI with TU shows better cyclability and higher average CE of 96.44% during 80 cycles compared to Li|Cu@NSEI and Li|Cu@ASEI w/o TU ( Figure 3 ). In addition, morphological and chemical investigation on the favorable ASEI layers assisted by TU, and its electrochemical performance in LMBs will be discussed in this presentation. [1] Cheng et al, Chem. Rev , 117 , 10403, 2017. [2] Lopez Jeffrey, et al. JACS 140.37 (2018): 11735-11744. [3] Yang Chun-Peng et al. Nature communications 6.1 (2015): 1-9. [4] Kang et al. Journal of Power Sources 490 (2021): 229504. [5] Zhang et al. Advanced Materials 32.24 (2020): 2001740. [6] Huang et al. Angewandte Chemie. 60.35 (2021): 19232-19240. [7] Nishizawa et al. Tetrahedron letters 36.36 (1995): 6483-6486. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助如意枫叶采纳,获得10
刚刚
牛牛完成签到,获得积分10
刚刚
香蕉觅云应助耶啵采纳,获得30
刚刚
刚刚
gll206关注了科研通微信公众号
刚刚
乐小子完成签到,获得积分10
1秒前
风中雪一发布了新的文献求助10
1秒前
孙福禄应助研友_5ZlN6L采纳,获得10
1秒前
藿藿完成签到,获得积分10
1秒前
苏silence发布了新的文献求助10
1秒前
1秒前
123完成签到,获得积分10
1秒前
yyyy发布了新的文献求助10
1秒前
Lucas应助sonder采纳,获得10
1秒前
2秒前
2秒前
苒柒完成签到,获得积分10
2秒前
dong应助seedcode采纳,获得10
2秒前
Wangyn完成签到,获得积分10
2秒前
567完成签到,获得积分10
3秒前
神勇从波发布了新的文献求助10
3秒前
4秒前
deng完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助150
4秒前
GGGGGG果果发布了新的文献求助10
4秒前
4秒前
HX完成签到,获得积分20
4秒前
林夏发布了新的文献求助10
5秒前
桐桐应助细心的青梦采纳,获得10
6秒前
激昂的背包完成签到,获得积分10
6秒前
tanc完成签到,获得积分10
6秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
青禾发布了新的文献求助10
7秒前
wanci应助要减肥的chao采纳,获得10
7秒前
8秒前
HX发布了新的文献求助30
8秒前
SciGPT应助儒雅致远采纳,获得10
8秒前
8秒前
ever完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582