Binding affinity prediction for antibody–protein antigen complexes: A machine learning analysis based on interface and surface areas

抗原 抗体 蛋白质-蛋白质相互作用 结合位点 亲缘关系 化学 计算生物学 生物 生物化学 免疫学
作者
Yong Xiao Yang,Pan Wang,Bao Ting Zhu
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier]
卷期号:118: 108364-108364 被引量:19
标识
DOI:10.1016/j.jmgm.2022.108364
摘要

Specific antibodies can bind to protein antigens with high affinity and specificity, and this property makes them one of the best protein-based therapeutics. Accurate prediction of antibody‒protein antigen binding affinity is crucial for designing effective antibodies. The current predictive methods for protein‒protein binding affinity usually fail to predict the binding affinity of an antibody‒protein antigen complex with a comparable level of accuracy. Here, new models specific for antibody‒antigen binding affinity prediction are developed according to the different types of interface and surface areas present in antibody‒antigen complex. The contacts-based descriptors are also employed to construct or train different models specific for antibody‒protein antigen binding affinity prediction. The results of this study show that (i) the area-based descriptors are slightly better than the contacts-based descriptors in terms of the predictive power; (ii) the new models specific for antibody‒protein antigen binding affinity prediction are superior to the previously-used general models for predicting the protein‒protein binding affinities; (iii) the performances of the best area-based and contacts-based models developed in this work are better than the performances of a recently-developed graph-based model (i.e., CSM-AB) specific for antibody‒protein antigen binding affinity prediction. The new models developed in this work would not only help understand the mechanisms underlying antibody‒protein antigen interactions, but would also be of some applicable utility in the design and virtual screening of antibody-based therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Orange应助周芷卉采纳,获得10
1秒前
2秒前
2秒前
冯二完成签到,获得积分10
2秒前
奋力的王打工人完成签到,获得积分10
3秒前
SciGPT应助zz采纳,获得30
5秒前
6秒前
kkkk发布了新的文献求助10
6秒前
桐桐应助cst采纳,获得10
6秒前
7秒前
明亮忆秋发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
9秒前
10秒前
现代秦始皇完成签到 ,获得积分10
10秒前
海绵君发布了新的文献求助10
11秒前
崔昕雨完成签到,获得积分20
11秒前
英姑应助Mp4采纳,获得10
12秒前
齐天大圣完成签到,获得积分10
12秒前
采采发布了新的文献求助10
13秒前
Echo完成签到,获得积分10
14秒前
14秒前
隐形曼青应助李子敬采纳,获得10
14秒前
kkkk完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
Echo发布了新的文献求助10
16秒前
18秒前
18秒前
xxlbp发布了新的文献求助10
19秒前
20秒前
20秒前
科研通AI2S应助DouDou采纳,获得10
21秒前
斯文败类应助hao采纳,获得10
21秒前
1117完成签到 ,获得积分10
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3568924
求助须知:如何正确求助?哪些是违规求助? 3140415
关于积分的说明 9437420
捐赠科研通 2841380
什么是DOI,文献DOI怎么找? 1561628
邀请新用户注册赠送积分活动 730569
科研通“疑难数据库(出版商)”最低求助积分说明 718144