可解释性
计算机科学
注释
药物靶点
人工智能
机器学习
药物发现
编码
生物信息学
计算生物学
生物信息学
生物
生物化学
药理学
基因
作者
Lei Huang,Jiecong Lin,Rui Li,Zetian Zheng,Lingkuan Meng,Xingjian Chen,Xiangtao Li,Ka‐Chun Wong
摘要
Abstract Motivation The identification of drug–target interactions (DTIs) plays a vital role for in silico drug discovery, in which the drug is the chemical molecule, and the target is the protein residues in the binding pocket. Manual DTI annotation approaches remain reliable; however, it is notoriously laborious and time-consuming to test each drug–target pair exhaustively. Recently, the rapid growth of labelled DTI data has catalysed interests in high-throughput DTI prediction. Unfortunately, those methods highly rely on the manual features denoted by human, leading to errors. Results Here, we developed an end-to-end deep learning framework called CoaDTI to significantly improve the efficiency and interpretability of drug target annotation. CoaDTI incorporates the Co-attention mechanism to model the interaction information from the drug modality and protein modality. In particular, CoaDTI incorporates transformer to learn the protein representations from raw amino acid sequences, and GraphSage to extract the molecule graph features from SMILES. Furthermore, we proposed to employ the transfer learning strategy to encode protein features by pre-trained transformer to address the issue of scarce labelled data. The experimental results demonstrate that CoaDTI achieves competitive performance on three public datasets compared with state-of-the-art models. In addition, the transfer learning strategy further boosts the performance to an unprecedented level. The extended study reveals that CoaDTI can identify novel DTIs such as reactions between candidate drugs and severe acute respiratory syndrome coronavirus 2-associated proteins. The visualization of co-attention scores can illustrate the interpretability of our model for mechanistic insights. Availability Source code are publicly available at https://github.com/Layne-Huang/CoaDTI.
科研通智能强力驱动
Strongly Powered by AbleSci AI