Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment Analysis

过度拟合 计算机科学 人工智能 机器学习 情绪分析 任务(项目管理) 人工神经网络 加权 医学 管理 经济 放射科
作者
Kai He,Rui Mao,Tieliang Gong,Chen Li,Erik Cambria
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1731-1742 被引量:54
标识
DOI:10.1109/taffc.2022.3202831
摘要

Aspect-based sentiment analysis (ABSA) means to identify fine-grained aspects, opinions, and sentiment polarities. Recent ABSA research focuses on utilizing multi-task learning (MTL) to achieve less computational costs and better performance. However, there are certain limits in MTL-based ABSA. For example, unbalanced labels and sub-task learning difficulties may result in the biases that some labels and sub-tasks are overfitting, while the others are underfitting. To address these issues, inspired by neuro-symbolic learning systems, we propose a meta-based self-training method with a meta-weighter (MSM). We believe that a generalizable model can be achieved by appropriate symbolic representation selection (in-domain knowledge) and effective learning control (regulation) in a neural system. Thus, MSM trains a teacher model to generate in-domain knowledge (e.g., unlabeled data selection and pseudo-label generation), where the generated pseudo-labels are used by a student model for supervised learning. Then, the meta-weighter of MSM is jointly trained with the student model to provide each instance with sub-task-specific weights to coordinate their convergence rates, balancing class labels, and alleviating noise impacts introduced from self-training. The following experiments indicate that MSM can utilize 50% labeled data to achieve comparable results to state-of-arts models in ABSA and outperform them with all labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
junjun发布了新的文献求助10
2秒前
HEXIN完成签到,获得积分10
4秒前
Hehhhh发布了新的文献求助10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
科研通AI2S应助DE2022采纳,获得10
6秒前
6秒前
8秒前
CodeCraft应助112233采纳,获得10
10秒前
10秒前
诚心以冬完成签到,获得积分10
10秒前
123发布了新的文献求助10
12秒前
13秒前
13秒前
MM11111应助章如豹采纳,获得20
15秒前
15秒前
小飞侠发布了新的文献求助10
16秒前
17秒前
18秒前
Liu完成签到,获得积分0
20秒前
20秒前
SciGPT应助屈聪展采纳,获得10
23秒前
Sky完成签到,获得积分10
23秒前
专炸油条完成签到 ,获得积分10
24秒前
24秒前
27秒前
xiao柒柒柒完成签到,获得积分10
28秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212510
求助须知:如何正确求助?哪些是违规求助? 2861446
关于积分的说明 8128656
捐赠科研通 2527386
什么是DOI,文献DOI怎么找? 1361023
科研通“疑难数据库(出版商)”最低求助积分说明 643421
邀请新用户注册赠送积分活动 615687