Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment Analysis

过度拟合 计算机科学 人工智能 机器学习 情绪分析 任务(项目管理) 人工神经网络 加权 医学 管理 经济 放射科
作者
Kai He,Rui Mao,Tieliang Gong,Chen Li,Erik Cambria
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1731-1742 被引量:54
标识
DOI:10.1109/taffc.2022.3202831
摘要

Aspect-based sentiment analysis (ABSA) means to identify fine-grained aspects, opinions, and sentiment polarities. Recent ABSA research focuses on utilizing multi-task learning (MTL) to achieve less computational costs and better performance. However, there are certain limits in MTL-based ABSA. For example, unbalanced labels and sub-task learning difficulties may result in the biases that some labels and sub-tasks are overfitting, while the others are underfitting. To address these issues, inspired by neuro-symbolic learning systems, we propose a meta-based self-training method with a meta-weighter (MSM). We believe that a generalizable model can be achieved by appropriate symbolic representation selection (in-domain knowledge) and effective learning control (regulation) in a neural system. Thus, MSM trains a teacher model to generate in-domain knowledge (e.g., unlabeled data selection and pseudo-label generation), where the generated pseudo-labels are used by a student model for supervised learning. Then, the meta-weighter of MSM is jointly trained with the student model to provide each instance with sub-task-specific weights to coordinate their convergence rates, balancing class labels, and alleviating noise impacts introduced from self-training. The following experiments indicate that MSM can utilize 50% labeled data to achieve comparable results to state-of-arts models in ABSA and outperform them with all labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
C陈完成签到,获得积分10
1秒前
2秒前
suger发布了新的文献求助10
3秒前
4秒前
干雅柏完成签到,获得积分10
5秒前
八九完成签到,获得积分10
6秒前
7秒前
干雅柏发布了新的文献求助10
8秒前
Stardust发布了新的文献求助10
8秒前
黑白和完成签到 ,获得积分10
9秒前
yang完成签到,获得积分10
10秒前
金蛋蛋发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
17秒前
22秒前
淡定的电源完成签到,获得积分10
25秒前
25秒前
lm发布了新的文献求助10
28秒前
30秒前
善学以致用应助孤独问旋采纳,获得10
30秒前
孙燕应助霸气安筠采纳,获得30
31秒前
李健应助科研通管家采纳,获得10
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得20
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
烟花应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
ding应助科研通管家采纳,获得10
32秒前
32秒前
SYLH应助科研通管家采纳,获得10
32秒前
CAOHOU应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得20
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173