A Novel Underwater Image Enhancement Algorithm and an Improved Underwater Biological Detection Pipeline

水下 计算机科学 水准点(测量) 直方图 特征(语言学) 管道(软件) 特征提取 人工智能 目标检测 定向梯度直方图 计算机视觉 块(置换群论) 算法 模式识别(心理学) 图像(数学) 数学 地质学 海洋学 哲学 语言学 程序设计语言 大地测量学 几何学
作者
Zheng Liu,Yaoming Zhuang,Pengrun Jia,Chengdong Wu,Hongli Xu,Zhanlin Liu
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 1204-1204 被引量:26
标识
DOI:10.3390/jmse10091204
摘要

For aquaculture resource evaluation and ecological environment monitoring, the automatic detection and identification of marine organisms is critical; however, due to the low quality of underwater images and the characteristics of underwater biological detection, the lack of abundant features can impede traditional hand-designed feature extraction approaches or CNN-based object detection algorithms, particularly in complex underwater environments. Therefore, the goal of this study was to perform object detection in underwater environments. This study developed a novel method for capturing feature information by adding the convolutional block attention module (CBAM) to the YOLOv5 backbone network. The interference of underwater organism characteristics in object characteristics decreased and the output object information of the backbone network was enhanced. In addition, a self-adaptive global histogram stretching algorithm (SAGHS) was designed to eliminate degradation problems, such as low contrast and color loss, that are caused by underwater environmental features in order to restore image quality. Extensive experiments and comprehensive evaluations using the URPC2021 benchmark dataset demonstrated the effectiveness and adaptivity of the proposed methods. Additionally, this study conducted an exhaustive analysis of the impacts of training data on performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助坚强谷槐采纳,获得10
刚刚
科研通AI6应助嘻嘻采纳,获得10
刚刚
知北完成签到,获得积分10
刚刚
传奇3应助DZ采纳,获得10
刚刚
维克托发布了新的文献求助10
1秒前
1秒前
INZZ完成签到,获得积分10
1秒前
所所应助xiaoziyi666采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
勿明发布了新的文献求助10
2秒前
2秒前
ddd完成签到,获得积分10
2秒前
热心忆灵完成签到,获得积分10
3秒前
炒鸡蛋发布了新的文献求助10
3秒前
眼睛大的仰完成签到,获得积分10
3秒前
勿明发布了新的文献求助10
3秒前
勿明发布了新的文献求助10
3秒前
勿明发布了新的文献求助10
3秒前
温柔的尔芙完成签到,获得积分10
3秒前
4秒前
4秒前
学不会科研完成签到,获得积分10
5秒前
斯文败类应助Hhh采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
超级丝发布了新的文献求助10
6秒前
7秒前
小拓跋完成签到,获得积分10
7秒前
7秒前
8秒前
廖琪发布了新的文献求助30
8秒前
8秒前
最好的完成签到,获得积分10
9秒前
10秒前
我开始找你了完成签到,获得积分10
10秒前
bkagyin应助么么叽采纳,获得10
10秒前
tong发布了新的文献求助10
11秒前
Lily发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573323
求助须知:如何正确求助?哪些是违规求助? 3993678
关于积分的说明 12363620
捐赠科研通 3666953
什么是DOI,文献DOI怎么找? 2020975
邀请新用户注册赠送积分活动 1055160
科研通“疑难数据库(出版商)”最低求助积分说明 942550