清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Underwater Image Enhancement Algorithm and an Improved Underwater Biological Detection Pipeline

水下 计算机科学 水准点(测量) 直方图 特征(语言学) 管道(软件) 特征提取 人工智能 目标检测 定向梯度直方图 计算机视觉 块(置换群论) 算法 模式识别(心理学) 图像(数学) 数学 地质学 海洋学 哲学 语言学 程序设计语言 大地测量学 几何学
作者
Zheng Liu,Yaoming Zhuang,Pengrun Jia,Chengdong Wu,Hongli Xu,Zhanlin Liu
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 1204-1204 被引量:26
标识
DOI:10.3390/jmse10091204
摘要

For aquaculture resource evaluation and ecological environment monitoring, the automatic detection and identification of marine organisms is critical; however, due to the low quality of underwater images and the characteristics of underwater biological detection, the lack of abundant features can impede traditional hand-designed feature extraction approaches or CNN-based object detection algorithms, particularly in complex underwater environments. Therefore, the goal of this study was to perform object detection in underwater environments. This study developed a novel method for capturing feature information by adding the convolutional block attention module (CBAM) to the YOLOv5 backbone network. The interference of underwater organism characteristics in object characteristics decreased and the output object information of the backbone network was enhanced. In addition, a self-adaptive global histogram stretching algorithm (SAGHS) was designed to eliminate degradation problems, such as low contrast and color loss, that are caused by underwater environmental features in order to restore image quality. Extensive experiments and comprehensive evaluations using the URPC2021 benchmark dataset demonstrated the effectiveness and adaptivity of the proposed methods. Additionally, this study conducted an exhaustive analysis of the impacts of training data on performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
1分钟前
牛的滑发布了新的文献求助10
1分钟前
Hello应助牛的滑采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
Owen应助菜菜子采纳,获得10
2分钟前
2分钟前
菜菜子发布了新的文献求助10
2分钟前
zcbb完成签到,获得积分10
2分钟前
菜菜子完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
3分钟前
3分钟前
drirshad完成签到,获得积分10
3分钟前
无奈代秋完成签到,获得积分10
4分钟前
赘婿应助无奈代秋采纳,获得10
4分钟前
4分钟前
5分钟前
无奈代秋发布了新的文献求助10
5分钟前
Zhu完成签到 ,获得积分10
5分钟前
Yini应助科研通管家采纳,获得100
5分钟前
lzy完成签到,获得积分10
6分钟前
Akim应助科研通管家采纳,获得10
7分钟前
nbtzy完成签到,获得积分10
7分钟前
研友_拓跋戾完成签到,获得积分10
8分钟前
汉堡包应助研友_拓跋戾采纳,获得10
8分钟前
量子星尘发布了新的文献求助50
8分钟前
方白秋完成签到,获得积分0
8分钟前
8分钟前
ljl86400完成签到,获得积分10
9分钟前
星辰大海应助科研通管家采纳,获得10
9分钟前
多亿点完成签到 ,获得积分10
11分钟前
usami42发布了新的文献求助10
11分钟前
lovelife完成签到,获得积分10
12分钟前
开心每一天完成签到 ,获得积分10
12分钟前
披着羊皮的狼完成签到 ,获得积分10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597