Adjusting for Publication Bias in JASP and R: Selection Models, PET-PEESE, and Robust Bayesian Meta-Analysis

频数推理 出版偏见 荟萃分析 贝叶斯概率 选择偏差 选择(遗传算法) 计算机科学 心理学 集合(抽象数据类型) 口译(哲学) 贝叶斯推理 统计 计量经济学 人工智能 数学 医学 内科学 程序设计语言
作者
František Bartoš,Maximilian Maier,Daniel Quintana,Eric‐Jan Wagenmakers
出处
期刊:Advances in methods and practices in psychological science [SAGE]
卷期号:5 (3) 被引量:69
标识
DOI:10.1177/25152459221109259
摘要

Meta-analyses are essential for cumulative science, but their validity can be compromised by publication bias. To mitigate the impact of publication bias, one may apply publication-bias-adjustment techniques such as precision-effect test and precision-effect estimate with standard errors (PET-PEESE) and selection models. These methods, implemented in JASP and R, allow researchers without programming experience to conduct state-of-the-art publication-bias-adjusted meta-analysis. In this tutorial, we demonstrate how to conduct a publication-bias-adjusted meta-analysis in JASP and R and interpret the results. First, we explain two frequentist bias-correction methods: PET-PEESE and selection models. Second, we introduce robust Bayesian meta-analysis, a Bayesian approach that simultaneously considers both PET-PEESE and selection models. We illustrate the methodology on an example data set, provide an instructional video ( https://bit.ly/pubbias ) and an R-markdown script ( https://osf.io/uhaew/ ), and discuss the interpretation of the results. Finally, we include concrete guidance on reporting the meta-analytic results in an academic article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴所谓完成签到,获得积分10
刚刚
华仔应助自信胡萝卜采纳,获得10
刚刚
科研通AI6应助坦率凌寒采纳,获得10
刚刚
1秒前
1秒前
雅雅完成签到,获得积分10
1秒前
aaa完成签到 ,获得积分10
1秒前
刻苦觅荷完成签到,获得积分20
2秒前
Lucas应助摩尔街棋子采纳,获得10
2秒前
2秒前
王誓言完成签到,获得积分10
2秒前
嘟嘟等文章完成签到,获得积分10
2秒前
mini完成签到,获得积分10
3秒前
to高坚果完成签到,获得积分10
3秒前
青松果完成签到,获得积分10
3秒前
汉堡包应助Er魁采纳,获得10
3秒前
4秒前
4秒前
bb完成签到,获得积分10
4秒前
dusai完成签到,获得积分10
4秒前
乌漆嘛黑完成签到,获得积分10
6秒前
sxy完成签到,获得积分10
6秒前
Miracle完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
哭热完成签到,获得积分10
7秒前
7秒前
青灿笑完成签到,获得积分10
7秒前
咕咕咕咕咕完成签到 ,获得积分10
7秒前
简单的卿完成签到,获得积分10
8秒前
王誓言发布了新的文献求助10
8秒前
陌上之心发布了新的文献求助10
8秒前
菠萝吹雪发布了新的文献求助10
9秒前
9秒前
可爱觅松完成签到 ,获得积分10
9秒前
烟花应助勤劳樱采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
ding应助全球免费科研1采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147