格子Boltzmann方法
多孔性
多孔介质
材料科学
传热
机械
打滑(空气动力学)
焦炭
热力学
化学工程
复合材料
冶金
物理
工程类
作者
Xuesong Yang,Shuai Wang,Guohui Gao,Yaning He
出处
期刊:Fuel
[Elsevier]
日期:2022-12-01
卷期号:330: 125591-125591
被引量:1
标识
DOI:10.1016/j.fuel.2022.125591
摘要
The double slip effect plays an important role in transport characteristics at the permeable porous interface between porous catalytic particle and free fluid, especially for coke deposition process. In this work, a direct pore-scale simulation is carried out via lattice Boltzmann method to investigate the mass, momentum and heat transfer process inside a porous composite system. The spatial distribution of velocity and temperature under the gas rarefaction effect is analyzed. Meanwhile, the impact of coke deposition on the double slip effect is also revealed. The results reveal that a high gas rarefaction effect can weaken the velocity double slip, which are greatly influenced by pore structural parameters. The dynamic evolution of pore structure, flow and heat transfer characteristics of the porous interface during the coke deposition process is investigated. It is found that the heat flow bifurcation phenomenon is enhanced under a high gas rarefaction effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI