Metabarcoding and applied ecology with hyperdiverse organisms: Recommendations for biological control research

生物 背景(考古学) 生态学 环境DNA 工作流程 分类单元 数据科学 进化生物学 生物多样性 计算机科学 数据库 古生物学
作者
Chia‐Hua Lue,Paul K. Abram,Jan Hrček,Matthew L. Buffington,Phillip P. A. Staniczenko
出处
期刊:Molecular Ecology [Wiley]
卷期号:32 (23): 6461-6473 被引量:6
标识
DOI:10.1111/mec.16677
摘要

Abstract Metabarcoding is revolutionizing fundamental research in ecology by enabling large‐scale detection of species and producing data that are rich with community context. However, the benefits of metabarcoding have yet to be fully realized in fields of applied ecology, especially those such as classical biological control (CBC) research that involve hyperdiverse taxa. Here, we discuss some of the opportunities that metabarcoding provides CBC and solutions to the main methodological challenges that have limited the integration of metabarcoding in existing CBC workflows. We focus on insect parasitoids, which are popular and effective biological control agents (BCAs) of invasive species and agricultural pests. Accurately identifying native, invasive and BCA species is paramount, since misidentification can undermine control efforts and lead to large negative socio‐economic impacts. Unfortunately, most existing publicly accessible genetic databases cannot be used to reliably identify parasitoid species, thereby limiting the accuracy of metabarcoding in CBC research. To address this issue, we argue for the establishment of authoritative genetic databases that link metabarcoding data to taxonomically identified specimens. We further suggest using multiple genetic markers to reduce primer bias and increase taxonomic resolution. We also provide suggestions for biological control‐specific metabarcoding workflows intended to track the long‐term effectiveness of introduced BCAs. Finally, we use the example of an invasive pest, Drosophila suzukii , in a reflective “what if” thought experiment to explore the potential power of community metabarcoding in CBC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胡志飞完成签到,获得积分10
3秒前
便宜小师傅完成签到 ,获得积分10
4秒前
4秒前
www完成签到 ,获得积分10
4秒前
5秒前
花蝴蝶完成签到 ,获得积分10
5秒前
6秒前
似鱼发布了新的文献求助10
7秒前
汉堡包应助左友铭采纳,获得10
7秒前
烟花应助会飞的野马采纳,获得10
8秒前
8秒前
9秒前
HEIKU应助DE2022采纳,获得10
9秒前
ranan发布了新的文献求助10
10秒前
香蕉觅云应助能干豆芽采纳,获得10
10秒前
1376发布了新的文献求助10
10秒前
张月鹿关注了科研通微信公众号
11秒前
CodeCraft应助lyn采纳,获得10
11秒前
11秒前
11秒前
12秒前
日出完成签到,获得积分10
12秒前
13秒前
Kiwi发布了新的文献求助10
13秒前
14秒前
日出发布了新的文献求助10
14秒前
王则前完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
甜崽小肉丸完成签到,获得积分10
16秒前
XIAOXIAO发布了新的文献求助10
17秒前
王则前发布了新的文献求助10
17秒前
小明完成签到,获得积分10
17秒前
一杯六一完成签到,获得积分10
18秒前
背书强发布了新的文献求助10
19秒前
谨川完成签到,获得积分20
19秒前
lixc发布了新的文献求助10
20秒前
DE2022发布了新的文献求助10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247794
求助须知:如何正确求助?哪些是违规求助? 2891053
关于积分的说明 8265876
捐赠科研通 2559283
什么是DOI,文献DOI怎么找? 1388075
科研通“疑难数据库(出版商)”最低求助积分说明 650683
邀请新用户注册赠送积分活动 627577