Multi-Stage Graph Fusion Networks for Major Depressive Disorder Diagnosis

重性抑郁障碍 判别式 计算机科学 人工智能 子空间拓扑 图形 图论 卷积神经网络 机器学习 心理学 理论计算机科学 精神科 认知 数学 组合数学
作者
Youyong Kong,Shuyi Niu,He-Ren Gao,Yingying Yue,Huazhong Shu,Chunming Xie,Zhijun Zhang,Yonggui Yuan
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1917-1928 被引量:10
标识
DOI:10.1109/taffc.2022.3205652
摘要

Major depressive disorder (MDD) is a common and severe psychiatric illness marked by loss of interest and low energy, which result in the highest burden of disability among all mental disorders. Clinical MDD diagnosis still utilizes the phenomenological approach of syndrome-based interview, which leads to a high rate of misdiagnosis. Therefore, it is highly imperative to explore effective biomarkers to enable precise personalized diagnosis. There still exist two main challenges due to complexity of MDD and individual differences. On the one hand, discriminative features need to be investigated to better reflect the characteristics of MDD. On the other hand, the performance from shallow and static learning models is still not satisfactory. To overcome these issues, we propose a novel Multi-Stage Graph Fusion Networks (MSGFN) for major depressive disorder diagnosis. At first, functional connectivity is calculated to better characterize interactions between white matter and gray matter. Second, multi-stage features are obtained by a deep subspace learning model, and a number of graphs are constructed under the self-expression constraints at each stage. Finally, a novel graph convolutional fusion module is proposed with graph convolutional operations to integrate features and graph at each stage. Extensive experiments demonstrate the superior performance of the proposed framework. Our source code is available on: https://github.com/LIST-KONG/MSGFN-master .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热爱zx的小陈完成签到,获得积分10
刚刚
刚刚
刚刚
happy lu完成签到,获得积分10
刚刚
乔恩完成签到,获得积分10
1秒前
沉静篮球完成签到 ,获得积分10
2秒前
QYW发布了新的文献求助10
3秒前
3秒前
3秒前
缥缈老九完成签到,获得积分10
3秒前
呓语发布了新的文献求助10
3秒前
loong完成签到,获得积分10
4秒前
4秒前
5秒前
如意冰棍完成签到 ,获得积分10
5秒前
椿iii发布了新的文献求助10
5秒前
5秒前
songjin发布了新的文献求助10
6秒前
lily完成签到,获得积分20
6秒前
幸运星完成签到,获得积分10
7秒前
8秒前
完美世界应助myit采纳,获得10
8秒前
lily发布了新的文献求助10
10秒前
rrr完成签到 ,获得积分10
10秒前
10秒前
sw98318完成签到,获得积分10
10秒前
饿哭了塞完成签到 ,获得积分10
11秒前
魏魏完成签到,获得积分10
11秒前
ug发布了新的文献求助10
12秒前
14秒前
dan发布了新的文献求助10
15秒前
科研学术完成签到,获得积分10
15秒前
精灵夜雨应助小星星采纳,获得10
15秒前
端庄的毛豆完成签到,获得积分10
15秒前
机械学渣完成签到,获得积分10
15秒前
car子完成签到 ,获得积分10
15秒前
蓝色的鱼发布了新的文献求助10
16秒前
呓语完成签到,获得积分10
17秒前
18秒前
bkagyin应助甜美的音响采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023