清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Stage Graph Fusion Networks for Major Depressive Disorder Diagnosis

重性抑郁障碍 判别式 计算机科学 人工智能 子空间拓扑 图形 图论 卷积神经网络 机器学习 心理学 理论计算机科学 精神科 认知 数学 组合数学
作者
Youyong Kong,Shuyi Niu,He-Ren Gao,Yingying Yue,Huazhong Shu,Chunming Xie,Zhijun Zhang,Yonggui Yuan
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1917-1928 被引量:15
标识
DOI:10.1109/taffc.2022.3205652
摘要

Major depressive disorder (MDD) is a common and severe psychiatric illness marked by loss of interest and low energy, which result in the highest burden of disability among all mental disorders. Clinical MDD diagnosis still utilizes the phenomenological approach of syndrome-based interview, which leads to a high rate of misdiagnosis. Therefore, it is highly imperative to explore effective biomarkers to enable precise personalized diagnosis. There still exist two main challenges due to complexity of MDD and individual differences. On the one hand, discriminative features need to be investigated to better reflect the characteristics of MDD. On the other hand, the performance from shallow and static learning models is still not satisfactory. To overcome these issues, we propose a novel Multi-Stage Graph Fusion Networks (MSGFN) for major depressive disorder diagnosis. At first, functional connectivity is calculated to better characterize interactions between white matter and gray matter. Second, multi-stage features are obtained by a deep subspace learning model, and a number of graphs are constructed under the self-expression constraints at each stage. Finally, a novel graph convolutional fusion module is proposed with graph convolutional operations to integrate features and graph at each stage. Extensive experiments demonstrate the superior performance of the proposed framework. Our source code is available on: https://github.com/LIST-KONG/MSGFN-master .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助30
3秒前
夏傥完成签到,获得积分10
6秒前
8秒前
酷波er应助潇洒的砖家采纳,获得10
14秒前
雪山飞龙完成签到,获得积分10
15秒前
南风完成签到,获得积分10
17秒前
雪山飞龙发布了新的文献求助10
18秒前
31秒前
雪山飞龙发布了新的文献求助10
36秒前
36秒前
廖先生完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
43秒前
潇洒的砖家完成签到,获得积分10
44秒前
1分钟前
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
安静的ky完成签到 ,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
烟花应助Wang采纳,获得10
1分钟前
rioo发布了新的文献求助10
1分钟前
斯文败类应助Dz1990m采纳,获得10
1分钟前
小西完成签到 ,获得积分10
1分钟前
suobawan_发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
suobawan_完成签到,获得积分10
1分钟前
Dz1990m发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
加贝完成签到 ,获得积分10
2分钟前
CipherSage应助MXX采纳,获得10
2分钟前
2分钟前
2分钟前
楠子发布了新的文献求助10
2分钟前
2分钟前
yao完成签到 ,获得积分10
2分钟前
rioo发布了新的文献求助10
2分钟前
MXX发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292