In situ grown oxygen-vacancy-rich copper oxide nanosheets on a copper foam electrode afford the selective oxidation of alcohols to value-added chemicals

催化作用 格式化 无机化学 甲醇 氧化物 氧化铜 化学 酒精氧化 氧气 化学工程 电解质 电极 选择性 有机化学 物理化学 工程类
作者
Mustafa Khan,Asima Hameed,Abdus Samad,Talifhani Mushiana,Muhammad Imran Abdullah,Asma Akhtar,Raja Shahid Ashraf,Ning Zhang,Bruno G. Pollet,Udo Schwingenschlögl,Mingming Ma
出处
期刊:Communications chemistry [Springer Nature]
卷期号:5 (1): 109-109 被引量:33
标识
DOI:10.1038/s42004-022-00708-1
摘要

Selective oxidation of low-molecular-weight aliphatic alcohols like methanol and ethanol into carboxylates in acid/base hybrid electrolytic cells offers reduced process operating costs for the generation of fuels and value-added chemicals, which is environmentally and economically more desirable than their full oxidation to CO2. Herein, we report the in-situ fabrication of oxygen-vacancies-rich CuO nanosheets on a copper foam (CF) via a simple ultrasonication-assisted acid-etching method. The CuO/CF monolith electrode enables efficient and selective electrooxidation of ethanol and methanol into value-added acetate and formate with ~100% selectivity. First principles calculations reveal that oxygen vacancies in CuO nanosheets efficiently regulate the surface chemistry and electronic structure, provide abundant active sites, and enhance charge transfer that facilitates the adsorption of reactant molecules on the catalyst surface. The as-prepared CuO/CF monolith electrode shows excellent stability for alcohol oxidation at current densities >200 mA·cm2 for 24 h. Moreover, the abundant oxygen vacancies significantly enhance the intrinsic indicators of the catalyst in terms of specific activity and outstanding turnover frequencies of 5.8k s-1 and 6k s-1 for acetate and formate normalized by their respective faradaic efficiencies at an applied potential of 1.82 V vs. RHE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医者完成签到,获得积分10
刚刚
刚刚
西瓜刀发布了新的文献求助10
1秒前
1秒前
周轩发布了新的文献求助10
1秒前
Crane发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
4秒前
小马甲应助下次一定采纳,获得10
4秒前
小二郎应助jg采纳,获得10
5秒前
5秒前
8秒前
9秒前
9秒前
9秒前
茹茹发布了新的文献求助10
10秒前
一号位完成签到,获得积分20
10秒前
聆听发布了新的文献求助10
10秒前
10秒前
能干彤完成签到,获得积分10
11秒前
越旻发布了新的文献求助10
13秒前
下次一定发布了新的文献求助10
13秒前
14秒前
laifeihong发布了新的文献求助50
15秒前
Jessica完成签到,获得积分0
15秒前
量子星尘发布了新的文献求助10
15秒前
出其东门完成签到,获得积分10
15秒前
核动力驴应助霍元甲采纳,获得10
16秒前
上官若男应助霍元甲采纳,获得10
16秒前
Mida应助开花不铁树采纳,获得10
19秒前
打打应助chemlink采纳,获得10
22秒前
22秒前
鱻雩关注了科研通微信公众号
24秒前
细心的思远完成签到,获得积分20
25秒前
爆米花应助ap2010采纳,获得30
25秒前
27秒前
27秒前
李健的小迷弟应助isabellae采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690