甘草甜素
HMGB1
衰老
链脲佐菌素
脐静脉
血管平滑肌
内分泌学
内科学
内皮
医学
糖尿病
内皮干细胞
下调和上调
内皮功能障碍
胸主动脉
生物
主动脉
炎症
生物化学
体外
平滑肌
基因
作者
Siyu Liu,Rong Hu,Jie Du,Yuan‐Jian Li,Xiaohui Li
标识
DOI:10.1016/j.ejphar.2022.175196
摘要
The senescence and dysfunction of vascular endothelial cells are important features of diabetic vascular disease. High mobility group box-1(HMGB1) may be involved in vascular injury in response to high glucose. Glycyrrhizin (GL) is an HMGB1 inhibitor that significantly reduces HMGB1. However, the relationship between HMGB1 and vascular ageing in diabetes is not clear, the protective mechanism of GL against vascular injury in type 2 diabetes mellitus (T2DM) is unclear too. This study aims to examine the role of HMGB1 in vascular endothelial cell senescence and the protective effects of GL on vascular aging in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic rats.After induction of diabetes, GL (150 mg/kg/d) was treated by gavage for 4 weeks. Results showed that compared with the Control group, the serum level of HMGB1 was increased in rats with type 2 diabetes, while the expression of HMGB1 mRNA and protein in the thoracic aorta was upregulated, with a decrease in endothelium-dependent vasodilation function and an increase in aging degree in the thoracic aorta. However, the above indicators were significantly improved after GL treatment. In HUVECs, we found that treated with HMGB1 (50, 100 and 200 ng/ml) for 48 h induced cells senescence and GL (50, 100 mg/L) significantly inhibited high-glucose-induced endothelial cell senescence, meanwhile GL (50, 100 mg/L) significantly inhibited the high-glucose-induced HMGB1 release and upregulated p53 expression. In conclusion, GL as an HMGB1 inhibitor, attenuates endothelium-dependent relaxation impairment and vascular ageing in an animal model of diabetes and high-glucose-induced endothelial cell senescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI