A data augmentation and channel selection technique for grading human emotions on DEAP dataset

计算机科学 情绪分类 人工智能 脑电图 频道(广播) 头戴式耳机 模式识别(心理学) 语音识别 机器学习 利用 特征选择 心理学 计算机网络 计算机安全 电信 精神科
作者
Uttam Singh,Rabi Shaw,Binoy Krishna Patra
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104060-104060 被引量:18
标识
DOI:10.1016/j.bspc.2022.104060
摘要

Emotion Recognition is one of the most important research area in the domain of Brain Computer Interactions. Human activities are influenced by emotions. Emotion recognition is carried out using gesture recognition, facial expressions etc. These methods are inconvenient and require quick feedback from users. Recently, Electroencephalogram technology has been found to be very efficient for emotion recognition task. Multi-Channel EEG headset is found to be an effective technology for BCI. However, it generates huge channel data and data obtained from many channels do not play effective role in identification of emotional state. In this paper, we use publicly available DEAP dataset as a source of EEG signals. Two major issues regrading the EEG data analysis is being addressed in this research. The first issue is the availability of the small number of samples. To address this issue, we exploit signal processing techniques. Multi-channel EEG with a large sampling frequency produces huge data per channel. All the channels are not important for emotion analysis and hence to address this second issue we explore metaheuristic algorithms to obtain an optimal subset of channels for emotion classification. Obtained results are very promising with 92.5% and 81.25% for two class classification in valence and arousal emotions and our proposed work can be used for practical applications of emotion classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大Q完成签到,获得积分20
1秒前
1秒前
。。。。发布了新的文献求助10
1秒前
xhz完成签到,获得积分10
2秒前
大模型应助C_Cppp采纳,获得10
2秒前
小雪完成签到,获得积分10
2秒前
搜集达人应助火日立采纳,获得10
3秒前
3秒前
lalala应助舒适静丹采纳,获得10
3秒前
3秒前
夜之枫完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助boshi采纳,获得10
5秒前
劲秉应助科研通管家采纳,获得30
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
劲秉应助科研通管家采纳,获得50
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得30
6秒前
研友_VZG7GZ应助络桵采纳,获得10
6秒前
香蕉觅云应助满意冷荷采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Hungrylunch应助虎头怪采纳,获得30
6秒前
fifteen应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453