拟南芥
钙
生物物理学
生物
钠
反转运蛋白
细胞生物学
压力(语言学)
盐(化学)
突变体
生物化学
材料科学
化学
基因
哲学
物理化学
冶金
语言学
膜
作者
Leonie Steinhorst,Gefeng He,Lena K. Moore,Stefanie Schültke,Ina Schmitz-Thom,Yibo Cao,Kenji Hashimoto,Zaida Andrés,Katrin Piepenburg,Paula Ragel,Smrutisanjita Behera,Bader O. Almutairi,Oliver Batistič,Thomas Wyganowski,Philipp Köster,Kai H. Edel,Chunxia Zhang,Melanie Krebs,Caifu Jiang,Yan Guo,Francisco J. Quintero,Ralph Bock,Jörg Kudla
标识
DOI:10.1016/j.devcel.2022.08.001
摘要
Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a “sodium-sensing niche” in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.
科研通智能强力驱动
Strongly Powered by AbleSci AI