亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:14
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
Able完成签到,获得积分10
1分钟前
jqliu发布了新的文献求助30
1分钟前
廷烨完成签到 ,获得积分10
2分钟前
雪狐417完成签到 ,获得积分10
2分钟前
爆米花应助tomorrow采纳,获得10
2分钟前
可靠的平彤完成签到,获得积分10
3分钟前
3分钟前
tomorrow完成签到,获得积分10
3分钟前
tomorrow发布了新的文献求助10
3分钟前
啊哒吸哇完成签到,获得积分10
3分钟前
张同学快去做实验呀完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助儒雅的夏翠采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
儒雅的夏翠完成签到,获得积分10
6分钟前
英俊的铭应助冷艳的萝莉采纳,获得30
6分钟前
6分钟前
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
7分钟前
阔达的沛文完成签到,获得积分10
7分钟前
8分钟前
Alanni完成签到 ,获得积分10
8分钟前
冷艳的萝莉完成签到,获得积分10
8分钟前
8分钟前
8分钟前
留胡子的裘完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
xingsixs发布了新的文献求助10
11分钟前
xingsixs完成签到,获得积分10
11分钟前
科研通AI2S应助英勇的半蕾采纳,获得30
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558620
求助须知:如何正确求助?哪些是违规求助? 4643690
关于积分的说明 14671377
捐赠科研通 4584977
什么是DOI,文献DOI怎么找? 2515302
邀请新用户注册赠送积分活动 1489369
关于科研通互助平台的介绍 1460113