Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:6
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诚心尔琴完成签到 ,获得积分10
1秒前
1秒前
Akim应助mage采纳,获得10
3秒前
虚幻的千秋完成签到,获得积分10
7秒前
8秒前
劲秉应助suye11111111111采纳,获得30
9秒前
蔺丹翠发布了新的文献求助10
9秒前
善学以致用应助Wang采纳,获得10
9秒前
tangguo完成签到,获得积分10
11秒前
nml发布了新的文献求助10
11秒前
12秒前
13秒前
小老板的手抓饼完成签到,获得积分10
13秒前
小可爱啵完成签到,获得积分10
17秒前
点心完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
20秒前
风趣的白玉完成签到 ,获得积分10
22秒前
22秒前
zzc发布了新的文献求助10
23秒前
ycccccc发布了新的文献求助10
24秒前
Shawn完成签到 ,获得积分10
25秒前
Yvaine完成签到,获得积分10
27秒前
28秒前
33秒前
FGG完成签到,获得积分10
34秒前
曾经耳机发布了新的文献求助10
34秒前
yangjianya完成签到,获得积分10
37秒前
汉堡包应助周舟采纳,获得30
38秒前
尊敬飞丹完成签到,获得积分10
38秒前
天真的嚓茶完成签到,获得积分10
40秒前
CodeCraft应助wangshui采纳,获得30
43秒前
海苔肉松卷完成签到,获得积分10
46秒前
FGG完成签到,获得积分10
48秒前
zzz完成签到 ,获得积分10
50秒前
謃河鷺起完成签到,获得积分10
50秒前
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352562
求助须知:如何正确求助?哪些是违规求助? 2977604
关于积分的说明 8680602
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709