Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:14
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路路人完成签到,获得积分10
刚刚
Guo1020181发布了新的文献求助10
刚刚
科研通AI6应助沉默的青筠采纳,获得100
刚刚
复杂真发布了新的文献求助10
1秒前
ddw发布了新的文献求助10
1秒前
DT发布了新的文献求助10
1秒前
斤斤完成签到,获得积分10
1秒前
2秒前
2秒前
谦让谷兰发布了新的文献求助20
2秒前
xiao发布了新的文献求助10
3秒前
斯文败类应助Yan1961采纳,获得10
3秒前
青田101完成签到,获得积分10
3秒前
冥土追魂发布了新的文献求助10
3秒前
CipherSage应助KIKI采纳,获得10
3秒前
3秒前
bkagyin应助冷静导师采纳,获得10
4秒前
4秒前
鬼无二心完成签到,获得积分10
4秒前
4秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
亦亦完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
wzx发布了新的文献求助20
6秒前
小二郎应助科研通管家采纳,获得30
6秒前
avalanche应助晃悠悠的可乐采纳,获得50
6秒前
瓜瓜瓜完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
苗条的落雁完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803