重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:14
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助顺利盼望采纳,获得10
刚刚
清脆南蕾发布了新的文献求助10
刚刚
刚刚
1秒前
zychaos发布了新的文献求助10
1秒前
1秒前
1秒前
11发布了新的文献求助10
1秒前
令狐远航完成签到,获得积分10
2秒前
lvpl发布了新的文献求助10
3秒前
3秒前
wanci应助afterly采纳,获得10
3秒前
3秒前
嗯呐完成签到,获得积分10
3秒前
4秒前
4秒前
小郑完成签到,获得积分10
4秒前
4秒前
4秒前
柠檬发布了新的文献求助10
4秒前
5秒前
猪猪侠完成签到,获得积分10
5秒前
爆米花应助墨尔本的翡翠采纳,获得10
5秒前
令狐远航发布了新的文献求助10
5秒前
耀星应助sss采纳,获得10
5秒前
大兵哥发布了新的文献求助10
6秒前
所所应助涛ss采纳,获得10
6秒前
carly发布了新的文献求助10
6秒前
Narcissus153发布了新的文献求助20
6秒前
6秒前
善学以致用应助MAKA采纳,获得10
7秒前
8秒前
wzx发布了新的文献求助10
8秒前
8秒前
科研通AI6应助顺利的雪莲采纳,获得10
8秒前
科研小虫完成签到,获得积分10
8秒前
8秒前
lriye发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467154
求助须知:如何正确求助?哪些是违规求助? 4570810
关于积分的说明 14327328
捐赠科研通 4497390
什么是DOI,文献DOI怎么找? 2463880
邀请新用户注册赠送积分活动 1452837
关于科研通互助平台的介绍 1427632