亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures

催化作用 沸石 还原(数学) 推论 选择性催化还原 材料科学 化学工程 化学 计算机科学 有机化学 工程类 数学 人工智能 几何学
作者
Shinyoung Bae,Hwangho Lee,Jun‐Seop Shin,Hyun Sub Kim,Yeonsoo Kim,Do Heui Kim,Jong Min Lee
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (17): 7761-7773 被引量:14
标识
DOI:10.1021/acs.chemmater.2c01092
摘要

Numerous zeolite-based selective catalytic reduction (SCR) catalysts have been investigated to improve nitrogen oxide (NOx) removal efficiency at low temperatures of 25–200 °C in diesel vehicles. However, the majority of these studies examined only one of each feature's effects. The catalysis mechanism consists of complex reactions, and the various features interact, making it difficult to predict their combinatorial effects on the catalytic activity. Recently, machine learning-based models have been widely employed in catalysis science to infer hidden information about catalysts without knowledge of the underlying physical principles. Interpretable machine learning models are particularly useful for catalyst research because they can explain the causal relationship between characteristics and catalytic performance. In this study, we construct a machine learning model utilizing a decision tree, one of the representative interpretable machine learning models. Using this model, we evaluate the causal relationship between features and the NOx removal efficiency of zeolite-based SCR catalysts at low temperatures, which is difficult to deduce due to the high number of features. Additionally, we extract several synthesis guidelines for catalysts that show superior NOx removal performance at low temperatures. New catalysts were synthesized using the proposed rules, and their performance was validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到,获得积分10
36秒前
kuoping完成签到,获得积分0
40秒前
脑洞疼应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
freyaaaaa应助科研通管家采纳,获得30
53秒前
1分钟前
无极微光应助白华苍松采纳,获得20
1分钟前
ericxu发布了新的文献求助10
1分钟前
ericxu完成签到,获得积分10
1分钟前
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
Owen应助nenoaowu采纳,获得10
1分钟前
2分钟前
胡可完成签到 ,获得积分10
2分钟前
2分钟前
wzbc完成签到,获得积分10
2分钟前
2分钟前
积极的觅松完成签到 ,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分10
3分钟前
无极微光应助白华苍松采纳,获得20
4分钟前
贤惠的白开水完成签到 ,获得积分10
4分钟前
瘦瘦的不可完成签到,获得积分20
4分钟前
freyaaaaa应助科研通管家采纳,获得30
4分钟前
4分钟前
5分钟前
yumeini发布了新的文献求助10
5分钟前
爆米花应助瘦瘦的不可采纳,获得10
5分钟前
无极微光应助白华苍松采纳,获得20
5分钟前
yumeini发布了新的文献求助10
5分钟前
5分钟前
JrPaleo101完成签到,获得积分10
5分钟前
yumeini发布了新的文献求助10
6分钟前
7分钟前
orixero应助净净采纳,获得10
7分钟前
李健应助白华苍松采纳,获得10
7分钟前
丘比特应助zhaowen采纳,获得10
7分钟前
7分钟前
净净发布了新的文献求助10
7分钟前
yumeini完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515938
求助须知:如何正确求助?哪些是违规求助? 4609139
关于积分的说明 14514503
捐赠科研通 4545666
什么是DOI,文献DOI怎么找? 2490799
邀请新用户注册赠送积分活动 1472660
关于科研通互助平台的介绍 1444407