上睑下垂
孕烷X受体
炎症体
化学
下调和上调
肝细胞
肝损伤
雄激素受体
细胞凋亡
细胞生物学
药理学
受体
生物化学
生物
核受体
体外
转录因子
基因
作者
Hangfei Liang,Yang Xiao,Huilin Li,Xinhui Wang,Hai‐Guo Su,Xuan Li,Jianing Tian,Chenghui Cai,Min Huang,Huichang Bi
标识
DOI:10.1016/j.bcp.2022.115222
摘要
Previously, we demonstrated that Schisandrol B (SolB) protected against lithocholic acid (LCA)-induced cholestatic liver injury (CLI) through pregnane X receptor (PXR). Additionally, growing evidence has revealed that pyroptosis is involved in CLI. Whether the hepatoprotective effect of SolB driven by PXR activation is related to pyroptosis in CLI remains unclear. First, the hepatoprotective effect of SolB was confirmed, as evidenced by the decreased mortality, morphological and histopathological changes, and biochemical parameters. The upregulated serum lactic dehydrogenase (LDH) level, increased number of TUNEL-positive cells, and formation of hepatocyte membrane pores induced by LCA were significantly alleviated after SolB pretreatment, indicating that SolB attenuated LCA-induced hepatocyte damage. Further analysis revealed that both NOD-like receptor protein 3 (NLRP3) inflammasome-induced canonical pyroptosis and apoptosis protease activating factor-1 (Apaf-1) pyroptosome-induced noncanonical pyroptosis were significantly inhibited after SolB pretreatment, as illustrated by the decreased expression levels of NLRP3, ASC, caspase-1, and GSDMD and the levels of Apaf-1, caspase-11 p20, caspase-3 p20, and GSDME. Furthermore, the activation of the NF-κB and FoxO1 signaling pathways was inhibited after SolB pretreatment. In addition, the activation of PXR via SolB was proven by luciferase reporter gene assays and the upregulation of PXR targets. The results illustrated that SolB could significantly inhibit NLRP3 inflammasome-induced canonical pyroptosis through the PXR/NF-κB/NLRP3 axis and inhibit Apaf-1 pyroptosome-induced noncanonical pyroptosis through the PXR/FoxO1/Apaf-1 axis. Collectively, this study revealed that SolB protected against CLI by inhibiting pyroptosis through PXR, providing new insights for understanding the molecular mechanism of SolB as a promising anti-cholestatic agent.
科研通智能强力驱动
Strongly Powered by AbleSci AI