Temporal attention aware dual-graph convolution network for air traffic flow prediction

计算机科学 树遍历 图形 图遍历 对偶(语法数字) 块(置换群论) 空中交通管制 数据挖掘 卷积(计算机科学) 嵌入 空中交通管理 实时计算 算法 理论计算机科学 人工智能 地理 数学 地图学 几何学 文学类 人工神经网络 艺术
作者
Kai‐Yuan Cai,Zhiqi Shen,Xiaoyan Luo,Yue Li
出处
期刊:Journal of Air Transport Management [Elsevier BV]
卷期号:106: 102301-102301 被引量:10
标识
DOI:10.1016/j.jairtraman.2022.102301
摘要

Air traffic flow prediction is vital for its supporting function for collaborative decision making in Air Traffic Management. However, due to the inherent spatial and temporal dependencies of air traffic flow and the irregular sector structure in which flow operates in, it is still a challenging problem. To solve this problem, numerous methods are proposed considering airspace adjacency, while flight routes and the origin-destination dependency are not taken into account. In this paper, we propose a temporal attention aware dual-graph convolution network (TAaDGCN) to predict air traffic flow, in which the airspace structure and routes of flow are both included. Firstly, a complementary spatial dual graph convolution module is constructed to capture the dependencies of adjacent sectors and origin-destination (OD) sectors. Then, to include long path information, a spatial embedding (SE) block is adopted to represent potential related sectors of flight traversal. Furthermore, to characterize temporal evolution pattern, a temporal attention (TA) module is applied to access past features of input sequence. Based on the blocks stated above, a spatio-temporal block is constructed in which multiple spatial and temporal dependencies are covered. The experimental results on real-world flight data demonstrate the proposed method can achieve a better prediction performance than other state-of-the-art comparison methods, especially superior to the methods that ignore the sector spatial structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vanff完成签到,获得积分10
刚刚
1秒前
搜集达人应助大力的菠萝采纳,获得10
1秒前
LU完成签到,获得积分20
2秒前
风清扬应助黄xiaomin采纳,获得30
3秒前
赘婿应助NOME采纳,获得10
4秒前
木易完成签到,获得积分10
4秒前
4秒前
爆米花应助march采纳,获得10
8秒前
8秒前
小十发布了新的文献求助10
9秒前
10秒前
12秒前
13秒前
李健的小迷弟应助小林采纳,获得10
13秒前
Ccc发布了新的文献求助10
13秒前
情怀应助善良的疯丫头采纳,获得10
14秒前
王欣完成签到 ,获得积分10
14秒前
邹大亮关注了科研通微信公众号
15秒前
shashali发布了新的文献求助50
15秒前
tenure发布了新的文献求助10
16秒前
16秒前
16秒前
万能的土豆完成签到,获得积分10
17秒前
Orange应助LU采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
yueyueyue发布了新的文献求助10
19秒前
星辰大海应助一位科研苟采纳,获得10
20秒前
Ccc完成签到,获得积分10
21秒前
21秒前
22秒前
NOME发布了新的文献求助10
23秒前
赘婿应助琳琳采纳,获得10
24秒前
Lucas应助PMoLGGYM2021采纳,获得10
24秒前
林间有鹿完成签到 ,获得积分10
26秒前
26秒前
march发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976