Integrated eco-driving automation of intelligent vehicles in multi-lane scenario via model-accelerated reinforcement learning

强化学习 计算机科学 障碍物 自动化 控制(管理) 避障 功能(生物学) 能量(信号处理) 模拟 人工智能 工程类 机器人 进化生物学 机械工程 生物 统计 数学 法学 移动机器人 政治学
作者
Ziqing Gu,Yuming Yin,Shengbo Eben Li,Jingliang Duan,Fawang Zhang,Sifa Zheng,Ruigang Yang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:144: 103863-103863 被引量:10
标识
DOI:10.1016/j.trc.2022.103863
摘要

The development of intelligent driving technologies is expected to have the potential in energy economics. Some reported studies mainly focused on the economical driving performance in cruising, following, or ramping scenarios, where longitudinal control is primarily considered. The impact of lateral decisions on economical performance is rarely discussed, especially in traffic flows. In the multi-lane scenario, the upper decision-making module could output reasonable behavior selections to avoid the limitation of single longitudinal control and further enhance the energy-saving potential in traffic flows, such as the appropriate lane-keeping or lane-changing proposal. Furthermore, designing comprehensive rules to coordinate diverse driving goals with separated decision-making and control modules is challenging. Therefore, this paper proposes an integrated decision and control framework for economical driving in the multi-lane scenario, based on the actor–critic reinforcement learning method. The proposed integrated framework contains two function layers: a static-evaluating layer and a dynamic-tracking layer. The former, i.e., the critic network, considers static information, evaluates potentially feasible lanes, and selects an advantage lane as the lane-changing proposal. The latter, i.e., the actor network, obtains dynamic traffic information and solves a constrained control problem. Finally, the solution aims to achieve obstacle avoidance and economical and stable tracking to the proposed advantage lane as far as possible. Furthermore, a model-accelerated soft actor–critic (MSAC) algorithm is developed to simultaneously solve the integrated decision and control problem. Simulation results show that the proposed learning-based integrated method could achieve economical driving and significantly outperform baselines in accumulated performance, energy efficiency, and driving comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingxing完成签到,获得积分10
2秒前
BruceQ完成签到 ,获得积分10
2秒前
michaelvin完成签到,获得积分10
2秒前
深海渔发布了新的文献求助10
3秒前
完美世界应助小李采纳,获得10
5秒前
美好乐松应助罗是一采纳,获得10
5秒前
5秒前
7秒前
7秒前
SciGPT应助三千年的成长采纳,获得10
8秒前
8秒前
Akim应助天真的皓轩采纳,获得10
11秒前
Venus发布了新的文献求助10
13秒前
张张发布了新的文献求助10
14秒前
哈哈哈哈发布了新的文献求助10
15秒前
lifeng完成签到 ,获得积分10
15秒前
JamesPei应助Venus采纳,获得10
17秒前
19秒前
LXYang完成签到,获得积分10
19秒前
Divya完成签到,获得积分10
20秒前
20秒前
武雨寒完成签到,获得积分20
22秒前
武雨寒发布了新的文献求助10
25秒前
Haiverxin完成签到,获得积分10
26秒前
28秒前
顺心的猪完成签到 ,获得积分10
29秒前
科研通AI2S应助罗是一采纳,获得10
29秒前
wpie99完成签到,获得积分10
31秒前
32秒前
34秒前
37秒前
Owen应助DianaRang采纳,获得30
38秒前
罗是一完成签到,获得积分10
41秒前
科研通AI2S应助三里清风采纳,获得10
42秒前
43秒前
44秒前
44秒前
45秒前
45秒前
小娜娜发布了新的文献求助10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825