亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated eco-driving automation of intelligent vehicles in multi-lane scenario via model-accelerated reinforcement learning

强化学习 计算机科学 障碍物 自动化 控制(管理) 避障 功能(生物学) 能量(信号处理) 模拟 人工智能 工程类 机器人 进化生物学 机械工程 生物 统计 数学 法学 移动机器人 政治学
作者
Ziqing Gu,Yuming Yin,Shengbo Eben Li,Jingliang Duan,Fawang Zhang,Sifa Zheng,Ruigang Yang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:144: 103863-103863 被引量:14
标识
DOI:10.1016/j.trc.2022.103863
摘要

The development of intelligent driving technologies is expected to have the potential in energy economics. Some reported studies mainly focused on the economical driving performance in cruising, following, or ramping scenarios, where longitudinal control is primarily considered. The impact of lateral decisions on economical performance is rarely discussed, especially in traffic flows. In the multi-lane scenario, the upper decision-making module could output reasonable behavior selections to avoid the limitation of single longitudinal control and further enhance the energy-saving potential in traffic flows, such as the appropriate lane-keeping or lane-changing proposal. Furthermore, designing comprehensive rules to coordinate diverse driving goals with separated decision-making and control modules is challenging. Therefore, this paper proposes an integrated decision and control framework for economical driving in the multi-lane scenario, based on the actor–critic reinforcement learning method. The proposed integrated framework contains two function layers: a static-evaluating layer and a dynamic-tracking layer. The former, i.e., the critic network, considers static information, evaluates potentially feasible lanes, and selects an advantage lane as the lane-changing proposal. The latter, i.e., the actor network, obtains dynamic traffic information and solves a constrained control problem. Finally, the solution aims to achieve obstacle avoidance and economical and stable tracking to the proposed advantage lane as far as possible. Furthermore, a model-accelerated soft actor–critic (MSAC) algorithm is developed to simultaneously solve the integrated decision and control problem. Simulation results show that the proposed learning-based integrated method could achieve economical driving and significantly outperform baselines in accumulated performance, energy efficiency, and driving comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jy完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
赫如冰完成签到 ,获得积分10
31秒前
49秒前
49秒前
49秒前
555557完成签到,获得积分10
50秒前
聂青枫完成签到,获得积分10
53秒前
黄黄黄应助Mannone采纳,获得10
54秒前
57秒前
1分钟前
555557发布了新的文献求助10
1分钟前
Liufgui应助Mannone采纳,获得10
1分钟前
1分钟前
hahah发布了新的文献求助10
1分钟前
小宋应助hahah采纳,获得20
1分钟前
hahah完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
毓雅完成签到,获得积分10
1分钟前
1分钟前
雨过天晴发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
李健应助雨过天晴采纳,获得10
2分钟前
firesquall完成签到,获得积分10
2分钟前
顺利凡蕾发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
顺利凡蕾完成签到,获得积分10
2分钟前
binyao2024完成签到,获得积分10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
oldcat96发布了新的文献求助10
3分钟前
3分钟前
思源应助oldcat96采纳,获得10
3分钟前
猕猴桃发布了新的文献求助30
3分钟前
情怀应助lsq采纳,获得10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188