Integrated eco-driving automation of intelligent vehicles in multi-lane scenario via model-accelerated reinforcement learning

强化学习 计算机科学 障碍物 自动化 控制(管理) 避障 功能(生物学) 能量(信号处理) 模拟 人工智能 工程类 机器人 进化生物学 机械工程 生物 统计 数学 法学 移动机器人 政治学
作者
Ziqing Gu,Yuming Yin,Shengbo Eben Li,Jingliang Duan,Fawang Zhang,Sifa Zheng,Ruigang Yang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:144: 103863-103863 被引量:14
标识
DOI:10.1016/j.trc.2022.103863
摘要

The development of intelligent driving technologies is expected to have the potential in energy economics. Some reported studies mainly focused on the economical driving performance in cruising, following, or ramping scenarios, where longitudinal control is primarily considered. The impact of lateral decisions on economical performance is rarely discussed, especially in traffic flows. In the multi-lane scenario, the upper decision-making module could output reasonable behavior selections to avoid the limitation of single longitudinal control and further enhance the energy-saving potential in traffic flows, such as the appropriate lane-keeping or lane-changing proposal. Furthermore, designing comprehensive rules to coordinate diverse driving goals with separated decision-making and control modules is challenging. Therefore, this paper proposes an integrated decision and control framework for economical driving in the multi-lane scenario, based on the actor–critic reinforcement learning method. The proposed integrated framework contains two function layers: a static-evaluating layer and a dynamic-tracking layer. The former, i.e., the critic network, considers static information, evaluates potentially feasible lanes, and selects an advantage lane as the lane-changing proposal. The latter, i.e., the actor network, obtains dynamic traffic information and solves a constrained control problem. Finally, the solution aims to achieve obstacle avoidance and economical and stable tracking to the proposed advantage lane as far as possible. Furthermore, a model-accelerated soft actor–critic (MSAC) algorithm is developed to simultaneously solve the integrated decision and control problem. Simulation results show that the proposed learning-based integrated method could achieve economical driving and significantly outperform baselines in accumulated performance, energy efficiency, and driving comfort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一江锦川完成签到,获得积分10
刚刚
1秒前
FashionBoy应助chenxiyin采纳,获得10
1秒前
洁净诗槐完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
Stephanie发布了新的文献求助10
2秒前
逆光发布了新的文献求助10
3秒前
3秒前
华仔应助李东东采纳,获得10
4秒前
Zj发布了新的文献求助10
5秒前
suohaiyun发布了新的文献求助10
5秒前
5秒前
LiOH发布了新的文献求助10
5秒前
5秒前
5秒前
昵称完成签到,获得积分10
5秒前
英俊的铭应助自然的书易采纳,获得10
6秒前
諵来北往完成签到,获得积分10
6秒前
尕辉发布了新的文献求助10
6秒前
勤劳冰枫完成签到,获得积分20
6秒前
6秒前
明芬发布了新的文献求助10
7秒前
7秒前
Layqiwook完成签到,获得积分10
7秒前
7秒前
7秒前
hhh完成签到 ,获得积分10
8秒前
8秒前
RuiXxxxx发布了新的文献求助10
8秒前
如意土豆完成签到 ,获得积分10
9秒前
Owen应助一二采纳,获得10
9秒前
malucia发布了新的文献求助10
9秒前
我是老大应助酷炫无声采纳,获得10
9秒前
贝贝子完成签到,获得积分10
9秒前
9秒前
Lip发布了新的文献求助10
9秒前
ZPJ发布了新的文献求助20
10秒前
Ava应助优秀的书萱采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848