Integrated eco-driving automation of intelligent vehicles in multi-lane scenario via model-accelerated reinforcement learning

强化学习 计算机科学 障碍物 自动化 控制(管理) 避障 功能(生物学) 能量(信号处理) 模拟 人工智能 工程类 机器人 进化生物学 机械工程 生物 统计 数学 法学 移动机器人 政治学
作者
Ziqing Gu,Yuming Yin,Shengbo Eben Li,Jingliang Duan,Fawang Zhang,Sifa Zheng,Ruigang Yang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:144: 103863-103863 被引量:14
标识
DOI:10.1016/j.trc.2022.103863
摘要

The development of intelligent driving technologies is expected to have the potential in energy economics. Some reported studies mainly focused on the economical driving performance in cruising, following, or ramping scenarios, where longitudinal control is primarily considered. The impact of lateral decisions on economical performance is rarely discussed, especially in traffic flows. In the multi-lane scenario, the upper decision-making module could output reasonable behavior selections to avoid the limitation of single longitudinal control and further enhance the energy-saving potential in traffic flows, such as the appropriate lane-keeping or lane-changing proposal. Furthermore, designing comprehensive rules to coordinate diverse driving goals with separated decision-making and control modules is challenging. Therefore, this paper proposes an integrated decision and control framework for economical driving in the multi-lane scenario, based on the actor–critic reinforcement learning method. The proposed integrated framework contains two function layers: a static-evaluating layer and a dynamic-tracking layer. The former, i.e., the critic network, considers static information, evaluates potentially feasible lanes, and selects an advantage lane as the lane-changing proposal. The latter, i.e., the actor network, obtains dynamic traffic information and solves a constrained control problem. Finally, the solution aims to achieve obstacle avoidance and economical and stable tracking to the proposed advantage lane as far as possible. Furthermore, a model-accelerated soft actor–critic (MSAC) algorithm is developed to simultaneously solve the integrated decision and control problem. Simulation results show that the proposed learning-based integrated method could achieve economical driving and significantly outperform baselines in accumulated performance, energy efficiency, and driving comfort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Urusaiina发布了新的文献求助10
2秒前
2秒前
田様应助教授王采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
尉迟希望举报求助违规成功
3秒前
杀出个黎明举报求助违规成功
3秒前
CAOHOU举报求助违规成功
3秒前
3秒前
打打应助古德方采纳,获得10
4秒前
健壮凡桃发布了新的文献求助10
6秒前
若杉发布了新的文献求助10
6秒前
CipherSage应助贪玩绮山采纳,获得10
6秒前
7秒前
cs完成签到,获得积分10
7秒前
7秒前
7秒前
Shannon发布了新的文献求助10
8秒前
sun完成签到,获得积分10
8秒前
yzm完成签到,获得积分10
8秒前
8秒前
zhhua完成签到,获得积分10
9秒前
红豆521完成签到,获得积分20
9秒前
9秒前
在水一方应助曾蕙茹采纳,获得10
10秒前
细心的日记本完成签到,获得积分10
11秒前
浅苏完成签到,获得积分10
11秒前
Orange应助小宋采纳,获得10
11秒前
xff完成签到 ,获得积分10
11秒前
曾经不言发布了新的文献求助10
12秒前
12秒前
缓慢的书蕾关注了科研通微信公众号
12秒前
12秒前
12秒前
scz发布了新的文献求助10
12秒前
Islet发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148