已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lyu,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:15
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅香彤完成签到 ,获得积分10
刚刚
李健的小迷弟应助pgojpogk采纳,获得20
1秒前
2秒前
小刘小刘发布了新的文献求助10
2秒前
搞笑煎蛋完成签到 ,获得积分10
2秒前
汉堡包应助英勇羿采纳,获得10
3秒前
3秒前
陈文文完成签到 ,获得积分10
3秒前
峥嵘发布了新的文献求助10
5秒前
摸鱼真君发布了新的文献求助10
6秒前
6秒前
7秒前
汉堡包应助YYC采纳,获得10
9秒前
9秒前
gbb发布了新的文献求助10
10秒前
黑苗完成签到,获得积分10
13秒前
天真板凳完成签到 ,获得积分10
14秒前
15秒前
wangyanling发布了新的文献求助10
16秒前
玻璃弹珠完成签到,获得积分10
17秒前
丘比特应助聪慧的哈吉米采纳,获得10
18秒前
18秒前
19秒前
19秒前
勤劳尔柳发布了新的文献求助10
21秒前
ljs完成签到 ,获得积分10
22秒前
大模型应助Liu采纳,获得10
23秒前
YYC发布了新的文献求助10
24秒前
六出发布了新的文献求助10
24秒前
25秒前
26秒前
26秒前
冬雪丶消融应助11采纳,获得30
27秒前
27秒前
忽而今夏发布了新的文献求助10
29秒前
英勇羿发布了新的文献求助10
29秒前
32秒前
wanci应助勤劳尔柳采纳,获得10
32秒前
CodeCraft应助孙誉文采纳,获得10
32秒前
俭朴千万发布了新的文献求助10
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557505
关于积分的说明 14263900
捐赠科研通 4480602
什么是DOI,文献DOI怎么找? 2454498
邀请新用户注册赠送积分活动 1445221
关于科研通互助平台的介绍 1421016