已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lyu,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:15
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moomba完成签到 ,获得积分10
2秒前
205完成签到 ,获得积分10
2秒前
xixi发布了新的文献求助30
3秒前
TCMning发布了新的文献求助10
3秒前
汤姆完成签到,获得积分10
5秒前
合适尔蝶发布了新的文献求助10
5秒前
wx关注了科研通微信公众号
7秒前
icelatte完成签到,获得积分10
8秒前
129完成签到 ,获得积分10
9秒前
10秒前
ding应助Jamestangbw采纳,获得10
10秒前
11秒前
思源应助tiri采纳,获得10
12秒前
乐乐应助勤能补拙采纳,获得10
14秒前
仲秋二三应助善良又亦采纳,获得10
14秒前
Ava应助CNS_Fighter88采纳,获得10
14秒前
WangLu2025完成签到 ,获得积分10
15秒前
tuanheqi应助上楼都费劲采纳,获得80
15秒前
lilin完成签到,获得积分10
15秒前
虔三愿发布了新的文献求助10
16秒前
18秒前
轻松的小海豚完成签到 ,获得积分10
18秒前
23秒前
23秒前
26秒前
X先生完成签到 ,获得积分10
26秒前
虚心的芹发布了新的文献求助10
26秒前
科研通AI6应助杭谷波采纳,获得10
27秒前
28秒前
山与发布了新的文献求助10
29秒前
CNS_Fighter88发布了新的文献求助10
30秒前
pcr163应助沉静问芙采纳,获得200
30秒前
33秒前
35秒前
aniver完成签到,获得积分10
35秒前
Eureka完成签到 ,获得积分10
36秒前
充电宝应助Jonathan采纳,获得10
36秒前
38秒前
Chemberry完成签到,获得积分10
38秒前
积极的觅松完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356