WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lyu,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:11
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻冥茗完成签到,获得积分10
刚刚
apple发布了新的文献求助10
1秒前
CarterXD完成签到,获得积分10
1秒前
紧张的友灵完成签到,获得积分10
1秒前
SciGPT应助之仔饼采纳,获得10
2秒前
liudiqiu应助追寻的易烟采纳,获得10
2秒前
Chem is try发布了新的文献求助10
2秒前
2秒前
vsoar完成签到,获得积分10
2秒前
3秒前
4秒前
GGGGGGGGGG发布了新的文献求助10
4秒前
4秒前
打打应助hhh采纳,获得10
5秒前
抓恐龙关注了科研通微信公众号
5秒前
碳点godfather完成签到,获得积分10
5秒前
ren完成签到,获得积分20
5秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
6秒前
TG_FY完成签到,获得积分10
6秒前
6秒前
hhh完成签到,获得积分10
6秒前
JamesPei应助诗轩采纳,获得10
7秒前
TT完成签到,获得积分10
8秒前
reck发布了新的文献求助10
8秒前
9秒前
DK发布了新的文献求助10
9秒前
英俊的铭应助ren采纳,获得10
9秒前
圈圈发布了新的文献求助10
9秒前
乐乱完成签到 ,获得积分10
10秒前
415484112完成签到,获得积分10
11秒前
yinyi发布了新的文献求助10
11秒前
11秒前
赵一丁完成签到,获得积分10
12秒前
成就绮琴完成签到 ,获得积分10
12秒前
Chen完成签到,获得积分10
12秒前
huanfid完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
Stitch完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672