WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lyu,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:15
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
breathe完成签到,获得积分10
刚刚
氢描氮写完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助俭朴的发带采纳,获得30
2秒前
violetyjm发布了新的文献求助10
4秒前
yijian完成签到,获得积分10
4秒前
5秒前
6秒前
梁栋发布了新的文献求助10
7秒前
7秒前
7秒前
搜集达人应助Hilary采纳,获得50
8秒前
3to3完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助某某采纳,获得10
9秒前
深情安青应助LastwhispersLee采纳,获得10
10秒前
田様应助MYLCX采纳,获得10
10秒前
11秒前
12秒前
小橘发布了新的文献求助10
12秒前
孙微祥发布了新的文献求助10
15秒前
田様应助蓝莓西西果冻采纳,获得10
15秒前
相爱就永远在一起完成签到,获得积分10
16秒前
一二发布了新的文献求助10
16秒前
还是你天天完成签到 ,获得积分10
17秒前
21秒前
十七完成签到,获得积分10
21秒前
3to3发布了新的文献求助10
21秒前
八九发布了新的文献求助10
22秒前
26秒前
27秒前
28秒前
可爱的冷霜完成签到,获得积分10
29秒前
Ava应助KINDMAGIC采纳,获得10
31秒前
一二完成签到,获得积分20
31秒前
31秒前
赴汤蹈火鸡面完成签到 ,获得积分10
32秒前
princecoof发布了新的文献求助10
32秒前
33秒前
七省总督发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
高速可见光通信关键技术 500
高速可见光通信芯片与应用系统 500
室外可见光通信与智能交通 500
可见光通信专用集成电路及实时系统 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4876459
求助须知:如何正确求助?哪些是违规求助? 4164899
关于积分的说明 12919619
捐赠科研通 3922435
什么是DOI,文献DOI怎么找? 2153328
邀请新用户注册赠送积分活动 1171461
关于科研通互助平台的介绍 1075214