WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lv,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:6
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Yara.H采纳,获得10
1秒前
汎影发布了新的文献求助10
2秒前
3秒前
仁谷居士完成签到 ,获得积分10
4秒前
爱艺斯坦完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
无辜忆寒发布了新的文献求助10
7秒前
mt发布了新的文献求助10
9秒前
Ronggaz完成签到,获得积分10
10秒前
11秒前
11秒前
yangliu071998完成签到,获得积分10
12秒前
Cc发布了新的文献求助10
12秒前
巴巴布拉博完成签到,获得积分10
12秒前
共享精神应助sugar采纳,获得10
13秒前
无律完成签到 ,获得积分10
14秒前
lixiaorui完成签到,获得积分10
15秒前
科研小白发布了新的文献求助10
16秒前
16秒前
dl完成签到,获得积分10
16秒前
17秒前
超级诗桃发布了新的文献求助30
17秒前
传奇3应助冷酷秋柳采纳,获得10
21秒前
lixiaorui发布了新的文献求助10
21秒前
23秒前
大胆吐司发布了新的文献求助10
23秒前
yiyilinlin完成签到,获得积分10
24秒前
Orange应助KeLiang采纳,获得10
24秒前
25秒前
26秒前
英吹斯挺发布了新的文献求助10
27秒前
周凡淇发布了新的文献求助10
27秒前
28秒前
28秒前
coco完成签到,获得积分10
29秒前
汎影发布了新的文献求助10
30秒前
30秒前
超级诗桃完成签到,获得积分20
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323