图灵
图案形成
数学
指数
统计物理学
波数
理论(学习稳定性)
傅里叶变换
指数函数
应用数学
数学分析
物理
计算机科学
光学
机器学习
生物
哲学
遗传学
程序设计语言
语言学
作者
Ronobir Chandra Sarker,Saroj Kumar Sahani
标识
DOI:10.1142/s0218127422300257
摘要
In this article, we have applied the Weyl differential operator in an epidemic model with the standard incidence rate to study pattern formation among species with superdiffusive movement in space. A thorough linear stability analysis predicts the various Turing pattern regions. Further, the analysis shows the relationship between the wavenumber of the Turing pattern and the superdiffusive exponent, which are supported by numerical results. A Fourier spectral method in space and a fourth-order exponential time differentiating Runge–Kutta method are used for numerical simulation. Simulations are done for the Turing pattern regions for 2D and 3D problems, showing the only quantitative change in patterns for varying superdiffusive exponents.
科研通智能强力驱动
Strongly Powered by AbleSci AI