亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised Medical Image Segmentation Using Cross-Model Pseudo-Supervision with Shape Awareness and Local Context Constraints

计算机科学 分割 辍学(神经网络) 背景(考古学) 人工智能 图像分割 编码(集合论) 机器学习 图像(数学) 模式识别(心理学) 功能(生物学) 计算机视觉 古生物学 生物 集合(抽象数据类型) 程序设计语言 进化生物学
作者
Jinhua Liu,Christian Desrosiers,Yuanfeng Zhou
出处
期刊:Lecture Notes in Computer Science 卷期号:: 140-150 被引量:23
标识
DOI:10.1007/978-3-031-16452-1_14
摘要

In semi-supervised medical image segmentation, the limited amount of labeled data available for training is often insufficient to learn the variability and complexity of target regions. To overcome these challenges, we propose a novel framework based on cross-model pseudo-supervision that generates anatomically plausible predictions using shape awareness and local context constraints. Our framework consists of two parallel networks, a shape-aware network and a shape-agnostic network, which provide pseudo-labels to each other for using unlabeled data effectively. The shape-aware network implicitly captures information on the shape of target regions by adding the prediction of the other network as input. On the other hand, the shape-agnostic network leverages Monte-Carlo dropout uncertainty estimation to generate reliable pseudo-labels to the other network. The proposed framework also comprises a new loss function that enables the network to learn the local context of the segmentation, thus improving the overall segmentation accuracy. Experiments on two publicly-available datasets show that our method outperforms state-of-the-art approaches for semi-supervised segmentation and better preserves anatomical morphology compared to these approaches. Code is available at https://github.com/igip-liu/SLC-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苗条鸡翅完成签到 ,获得积分10
2秒前
Cmqq发布了新的文献求助10
3秒前
孔踏歌发布了新的文献求助20
6秒前
alex发布了新的文献求助10
16秒前
23秒前
31秒前
小呆瓜发布了新的文献求助10
37秒前
文章发发发完成签到 ,获得积分10
42秒前
orixero应助小呆瓜采纳,获得10
43秒前
星辰大海应助clickable采纳,获得10
49秒前
Ava应助Cmqq采纳,获得10
1分钟前
1分钟前
CC完成签到 ,获得积分10
1分钟前
省级中药饮片完成签到 ,获得积分10
1分钟前
tctc完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
瑞雪发布了新的文献求助10
2分钟前
瑞雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
充电宝应助zhouxunnjau采纳,获得10
2分钟前
果果发布了新的文献求助10
2分钟前
所所应助Cmqq采纳,获得10
2分钟前
小马甲应助吱吱草莓派采纳,获得10
2分钟前
欣喜秋天完成签到,获得积分20
2分钟前
领导范儿应助吱吱草莓派采纳,获得10
3分钟前
3分钟前
大牛牛完成签到,获得积分10
3分钟前
过眼云烟完成签到,获得积分10
3分钟前
求学发布了新的文献求助10
3分钟前
3分钟前
clickable发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904