亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of Extendable Open-Source Structural Inspection Datasets

桥(图论) 计算机科学 目视检查 注释 方向(向量空间) 人工智能 深度学习 数据挖掘 几何学 数学 医学 内科学
作者
Eric Bianchi,Matthew H. Hebdon
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (6) 被引量:1
标识
DOI:10.1061/(asce)cp.1943-5487.0001045
摘要

Recent infrastructure inspection has used deep-learning models to enhance and augment typical inspection tasks such as detecting and quantifying damage. One of the issues with this trend is that deep-learning models typically require a significant amount of data. In a data domain such as structural inspection, publicly accessible data are difficult to find, making the advancement of this research slower. Therefore, we set out to acquire bridge inspection data by selectively extracting candidate images from hundreds of thousands of bridge inspection reports from the Virginia Department of Transportation. Using this rich source of diverse data, we refined our collected data to develop four high-quality, easily extendable, publicly accessible datasets, tested with state-of-the-art models to support typical bridge inspection tasks. The four datasets: labeled cracks in the wild, 3,817 image sets of semantically segmented concrete cracks taken from diverse scenery; 3,817 image sets of semantically segmented structural inspection materials (concrete, steel, metal decking); 440 images of finely annotated steel corrosion condition state (good, fair, poor, severe); and 1,470 images of fatigue-prone structural steel bridge details (bearings, gusset plates, cover plate terminations, and out-of-plane stiffeners) for object detection. To ensure the extendibility of the datasets, the authors have proposed annotation guidelines to maintain consistent growth through annotation collaboration. Researchers can use these trained models and data for auxiliary inspection tasks such as damage detection, damage forecasting, automatic report generation, and, coupled with the assistance of unmanned aerial systems, for autonomous flight path planning and object avoidance. The procedures, concepts, and repositories provided in this paper will help to set a course for the advancement of better detection models using high-quality accessible and extendable datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
11秒前
17秒前
30秒前
36秒前
CipherSage应助Dpd采纳,获得10
40秒前
老马哥完成签到,获得积分0
50秒前
Tanyang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
修管子完成签到,获得积分10
1分钟前
taku完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
暖雪儿发布了新的文献求助10
2分钟前
二十八画生完成签到 ,获得积分10
2分钟前
77完成签到 ,获得积分10
2分钟前
科研通AI2S应助暖雪儿采纳,获得10
2分钟前
2分钟前
丝垚完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
心随以动完成签到 ,获得积分10
3分钟前
Gigi发布了新的文献求助10
3分钟前
3分钟前
3分钟前
冷艳的立果应助Gigi采纳,获得10
3分钟前
修辛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
圆滚滚的栗子君完成签到 ,获得积分10
3分钟前
bkagyin应助ling采纳,获得10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298