Intelligent Diagnosis of Abnormal Charging for Electric Bicycles Based on Improved Dynamic Time Warping

动态时间归整 计算机科学 电池(电) 插件 网格 电动汽车 鉴定(生物学) 模拟 汽车工程 实时计算 功率(物理) 工程类 人工智能 物理 几何学 数学 植物 量子力学 生物 程序设计语言
作者
Chunyan Shuai,Yu Sun,Xiaoqi Zhang,Fang Yang,Xin Ouyang,Zheng Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 7280-7289 被引量:10
标识
DOI:10.1109/tie.2022.3206702
摘要

The widespread penetration of electric bicycles (E-bicycles) raises numerous charging safety concerns. However, online diagnosis of charging safety for E-bicycles remains challenging due to the limited data and involvement of multiple factors, such as battery, charger, charging mode, and user behavior. To overcome this difficulty and promote charging safety, this article proposes a nonintrusive charging safety intelligent diagnosis scheme on the inputted power grid side. First, more than 150 000 charging records are collected from the grid side, and various charging current patterns are formally identified according to the working principles of different batteries, charging modes, and user behaviors. Then, on the basis of longest similar substring (LSS), an improved dynamic time warping (DTW) model, referred to as LSS-DTW, is established to efficiently identify the charging current profile similarities and meanwhile restrict the overregularization of DTW. By this manner, the abnormal charging processes can be accurately identified. Experimental results reveal that the built LSS-DTW model can distinguish the unsafe charging processes online, and achieve the average identification precision, recall, and F1-score of 94%. Furthermore, the proposed algorithm can be extended to similar charging safety identifications in electric vehicles and other battery-powered systems and provides early warnings to avoid catastrophic consequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
yangmingyu完成签到,获得积分10
1秒前
流光完成签到,获得积分10
1秒前
虚幻百川完成签到,获得积分10
1秒前
Chany完成签到 ,获得积分10
1秒前
1秒前
zsy发布了新的文献求助10
1秒前
风暴之灵完成签到,获得积分10
2秒前
冷如松发布了新的文献求助30
2秒前
lanlan发布了新的文献求助30
3秒前
zmz发布了新的文献求助50
3秒前
脑洞疼应助月亮不知道采纳,获得20
3秒前
4秒前
maclogos发布了新的文献求助10
4秒前
叹千泠发布了新的文献求助30
4秒前
hd完成签到,获得积分10
5秒前
5秒前
5秒前
共享精神应助微风往事采纳,获得10
5秒前
好想睡觉发布了新的文献求助10
5秒前
迷路赛君完成签到,获得积分10
6秒前
6秒前
大大完成签到,获得积分10
6秒前
文艺如凡完成签到,获得积分10
6秒前
雷家完成签到,获得积分10
6秒前
6秒前
闪闪的完成签到,获得积分20
6秒前
卷心菜发布了新的文献求助10
6秒前
深情安青应助Atopos采纳,获得10
6秒前
噗咔咔ya完成签到 ,获得积分10
6秒前
Hello应助Haoyun采纳,获得10
6秒前
顺心夜南应助miao采纳,获得20
7秒前
重楼远志发布了新的文献求助100
7秒前
李健应助LDD采纳,获得10
7秒前
ding应助冷酷的松思采纳,获得10
7秒前
momo19完成签到,获得积分10
7秒前
lijunying完成签到,获得积分10
7秒前
alan完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005