Intelligent Diagnosis of Abnormal Charging for Electric Bicycles Based on Improved Dynamic Time Warping

动态时间归整 计算机科学 电池(电) 插件 网格 电动汽车 鉴定(生物学) 模拟 汽车工程 实时计算 功率(物理) 工程类 人工智能 物理 几何学 数学 植物 量子力学 生物 程序设计语言
作者
Chunyan Shuai,Yu Sun,Xiaoqi Zhang,Fang Yang,Xin Ouyang,Zheng Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 7280-7289 被引量:10
标识
DOI:10.1109/tie.2022.3206702
摘要

The widespread penetration of electric bicycles (E-bicycles) raises numerous charging safety concerns. However, online diagnosis of charging safety for E-bicycles remains challenging due to the limited data and involvement of multiple factors, such as battery, charger, charging mode, and user behavior. To overcome this difficulty and promote charging safety, this article proposes a nonintrusive charging safety intelligent diagnosis scheme on the inputted power grid side. First, more than 150 000 charging records are collected from the grid side, and various charging current patterns are formally identified according to the working principles of different batteries, charging modes, and user behaviors. Then, on the basis of longest similar substring (LSS), an improved dynamic time warping (DTW) model, referred to as LSS-DTW, is established to efficiently identify the charging current profile similarities and meanwhile restrict the overregularization of DTW. By this manner, the abnormal charging processes can be accurately identified. Experimental results reveal that the built LSS-DTW model can distinguish the unsafe charging processes online, and achieve the average identification precision, recall, and F1-score of 94%. Furthermore, the proposed algorithm can be extended to similar charging safety identifications in electric vehicles and other battery-powered systems and provides early warnings to avoid catastrophic consequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三文鱼完成签到,获得积分20
刚刚
1秒前
cao发布了新的文献求助10
1秒前
2秒前
2秒前
无花果应助落寞访波采纳,获得200
3秒前
霜白头发布了新的文献求助10
4秒前
4秒前
4秒前
dandan完成签到,获得积分10
4秒前
Pretrial完成签到 ,获得积分10
5秒前
诗诗发布了新的文献求助10
6秒前
fbpuf完成签到,获得积分10
6秒前
hexiqin完成签到,获得积分10
7秒前
Summer完成签到,获得积分10
7秒前
YQF完成签到,获得积分10
7秒前
丰富紫寒发布了新的文献求助10
8秒前
lalala应助baimiaomuzi采纳,获得20
9秒前
杜嘟嘟发布了新的文献求助10
9秒前
华安完成签到,获得积分10
10秒前
三文鱼发布了新的文献求助10
10秒前
霜白头完成签到,获得积分10
10秒前
11秒前
yuanquan发布了新的文献求助10
11秒前
陈紫君完成签到 ,获得积分10
11秒前
Yu发布了新的文献求助10
12秒前
华仔应助个性雁开采纳,获得10
14秒前
cara应助研友_LJGOan采纳,获得10
14秒前
14秒前
脑洞疼应助zhi采纳,获得10
14秒前
烟花应助陈紫君采纳,获得10
15秒前
典雅诗筠完成签到,获得积分10
16秒前
zhanghe完成签到,获得积分20
16秒前
李梓聖关注了科研通微信公众号
16秒前
16秒前
田様应助英俊的水彤采纳,获得10
17秒前
cyk1999关注了科研通微信公众号
18秒前
18秒前
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263875
求助须知:如何正确求助?哪些是违规求助? 2904164
关于积分的说明 8328454
捐赠科研通 2574250
什么是DOI,文献DOI怎么找? 1398989
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 632966