Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯一一应助爱听歌的火火采纳,获得10
1秒前
2秒前
2秒前
2秒前
charlie67373完成签到,获得积分10
3秒前
说好不哭发布了新的文献求助10
3秒前
结实大白完成签到,获得积分10
4秒前
Horizon发布了新的文献求助30
5秒前
6秒前
6秒前
Cheng发布了新的文献求助10
6秒前
勤奋大地发布了新的文献求助10
6秒前
今后应助辉哥采纳,获得10
7秒前
Weining发布了新的文献求助10
7秒前
7秒前
lipeng完成签到,获得积分10
9秒前
zydaphne发布了新的文献求助20
9秒前
9秒前
orixero应助魏少爷采纳,获得10
9秒前
anti发布了新的文献求助10
11秒前
耶豆发布了新的文献求助10
11秒前
13秒前
Jmting完成签到,获得积分20
13秒前
13秒前
14秒前
CodeCraft应助Cheng采纳,获得10
15秒前
lllll发布了新的文献求助10
15秒前
醉熏的玉兰完成签到,获得积分10
16秒前
甜蜜静白完成签到,获得积分20
16秒前
Jmting发布了新的文献求助10
17秒前
17秒前
snutcc发布了新的文献求助10
18秒前
勤奋大地完成签到,获得积分10
20秒前
22秒前
22秒前
23秒前
CodeCraft应助totoro采纳,获得10
25秒前
JlkD发布了新的文献求助10
25秒前
Lucas应助XL神放采纳,获得10
26秒前
搜集达人应助曼城是冠军采纳,获得10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234