Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静完成签到,获得积分10
刚刚
ding应助rui采纳,获得10
刚刚
所所应助刘睿颖采纳,获得10
1秒前
pan发布了新的文献求助10
1秒前
1秒前
1秒前
小碎步发布了新的文献求助10
1秒前
活力的静曼完成签到,获得积分10
2秒前
烟花应助小马的可爱老婆采纳,获得10
2秒前
Aki_27完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
领导范儿应助Luhh采纳,获得10
3秒前
难过以亦完成签到 ,获得积分10
3秒前
tiezhu发布了新的文献求助10
3秒前
lcy完成签到,获得积分10
3秒前
JamesPei应助li采纳,获得10
3秒前
Schmidt完成签到,获得积分10
3秒前
Tobeyleonard发布了新的文献求助10
4秒前
功夫熊猫发布了新的文献求助10
4秒前
4秒前
飘逸访蕊完成签到,获得积分20
4秒前
yang发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
小二郎应助XX采纳,获得10
5秒前
qhdsyxy完成签到 ,获得积分0
5秒前
duanqianqian完成签到,获得积分10
6秒前
7秒前
张存银发布了新的文献求助10
7秒前
悦耳的真完成签到,获得积分10
7秒前
一潘发布了新的文献求助10
7秒前
李小山完成签到,获得积分10
7秒前
大模型应助cyy1226采纳,获得10
7秒前
李爱国应助繁荣的悟空采纳,获得10
8秒前
neil发布了新的文献求助10
8秒前
8秒前
天天摸鱼完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997