Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 经济 管理 社会学 社会科学
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LJ发布了新的文献求助10
刚刚
1秒前
2秒前
菠萝吹雪发布了新的文献求助10
2秒前
ljact完成签到,获得积分10
3秒前
3秒前
ding应助优秀问丝采纳,获得10
3秒前
心驰天外完成签到,获得积分10
4秒前
牵猫散步的鱼完成签到,获得积分10
4秒前
李禹晗发布了新的文献求助10
4秒前
4秒前
yolo完成签到,获得积分10
5秒前
5秒前
小东西完成签到,获得积分10
5秒前
5秒前
天天快乐应助谦谦采纳,获得10
6秒前
田様应助陈M雯采纳,获得10
6秒前
want_top_journal完成签到,获得积分10
7秒前
欢呼南晴完成签到,获得积分10
7秒前
ztq完成签到 ,获得积分10
7秒前
jiejie完成签到,获得积分10
8秒前
秦风发布了新的文献求助10
8秒前
飞鸟吃鱼完成签到 ,获得积分10
8秒前
pluto应助leo采纳,获得10
8秒前
大方师发布了新的文献求助10
9秒前
小狗呼噜噜完成签到 ,获得积分10
10秒前
深情安青应助HJQ采纳,获得10
10秒前
fzdzc完成签到 ,获得积分10
10秒前
萌only发布了新的文献求助10
11秒前
莫愁发布了新的文献求助10
11秒前
枝头树上的布谷鸟完成签到,获得积分10
11秒前
11秒前
12秒前
XZZH完成签到,获得积分10
12秒前
13秒前
打打应助yanny采纳,获得10
13秒前
長乐完成签到 ,获得积分10
13秒前
欢呼凝冬完成签到 ,获得积分10
13秒前
CipherSage应助zzzzzz采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769