Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助chai采纳,获得10
刚刚
xxx完成签到,获得积分10
1秒前
DRHSK发布了新的文献求助10
1秒前
魏无羡完成签到,获得积分10
1秒前
斧王发布了新的文献求助10
1秒前
赤侯发布了新的文献求助10
2秒前
2秒前
Anatocism完成签到,获得积分10
2秒前
眯眯眼的太阳完成签到 ,获得积分10
2秒前
欣喜绍辉发布了新的文献求助10
3秒前
Lxx完成签到,获得积分10
3秒前
宋佳珍完成签到,获得积分10
3秒前
Lucas应助雾里青采纳,获得10
3秒前
研友_VZG7GZ应助xiaoE采纳,获得10
3秒前
快乐科研发布了新的文献求助10
3秒前
4秒前
爆米花应助111采纳,获得10
4秒前
xxx发布了新的文献求助10
4秒前
蓦然回首完成签到,获得积分10
4秒前
4秒前
和谐青柏应助slimayw12采纳,获得10
4秒前
4秒前
5秒前
5秒前
能干寻芹完成签到,获得积分10
5秒前
小栩完成签到,获得积分10
5秒前
yel发布了新的文献求助10
6秒前
6秒前
zz完成签到,获得积分20
6秒前
一点完成签到,获得积分10
6秒前
ccccc完成签到,获得积分20
7秒前
七n一发布了新的文献求助10
7秒前
luchong发布了新的文献求助50
7秒前
7秒前
8秒前
坚强的赛凤完成签到,获得积分10
8秒前
大模型应助warithy采纳,获得10
8秒前
xixima发布了新的文献求助10
8秒前
丘比特应助务实的落雁采纳,获得10
8秒前
飞飞飞完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577