Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cong完成签到 ,获得积分10
刚刚
秦秦秦发布了新的文献求助10
1秒前
端庄的蜡烛完成签到,获得积分10
1秒前
ZRL完成签到,获得积分10
2秒前
Anonymous完成签到,获得积分10
2秒前
我思故我在完成签到,获得积分0
2秒前
zhy完成签到,获得积分10
4秒前
4秒前
morry5007发布了新的文献求助30
5秒前
soory完成签到,获得积分10
7秒前
邱琳完成签到,获得积分10
7秒前
meizi0109完成签到 ,获得积分10
7秒前
10秒前
kaidaniel发布了新的文献求助30
10秒前
桃子完成签到 ,获得积分10
11秒前
csj的老父亲完成签到,获得积分10
13秒前
想人陪的飞薇完成签到 ,获得积分10
15秒前
hyxu678完成签到,获得积分10
15秒前
bkagyin应助刻苦棒球采纳,获得10
15秒前
Ali完成签到 ,获得积分10
16秒前
夕荀完成签到,获得积分10
16秒前
xc完成签到,获得积分20
17秒前
HJJHJH完成签到,获得积分10
17秒前
jianglili完成签到,获得积分10
17秒前
andrewyu完成签到,获得积分10
17秒前
QQLL完成签到,获得积分10
18秒前
美好乌冬面完成签到,获得积分10
19秒前
大气的尔蓝完成签到,获得积分10
19秒前
研友_Lpawrn发布了新的文献求助10
19秒前
123完成签到,获得积分10
20秒前
平常的雁凡完成签到,获得积分10
20秒前
20秒前
断了的弦完成签到,获得积分10
21秒前
Criminology34应助Miao采纳,获得10
21秒前
朱佳宁完成签到 ,获得积分10
21秒前
Pie完成签到,获得积分10
22秒前
吃饱再睡完成签到 ,获得积分10
22秒前
demom完成签到,获得积分10
23秒前
细嗅蔷薇完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378