Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的弱应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
泽松应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
泽松应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
挡住所有坏运气888完成签到,获得积分10
2秒前
2秒前
Lucas应助睡眠不足中采纳,获得10
3秒前
kusedayang发布了新的文献求助10
3秒前
行雨完成签到,获得积分20
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070