亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助sfwer采纳,获得30
6秒前
只为更出色完成签到,获得积分10
8秒前
欣喜的人龙完成签到 ,获得积分10
10秒前
12秒前
14秒前
海洋球完成签到,获得积分10
21秒前
kevin完成签到 ,获得积分10
22秒前
23秒前
图南完成签到 ,获得积分10
25秒前
Edou完成签到 ,获得积分10
29秒前
leeSongha完成签到 ,获得积分10
32秒前
熬夜写论文完成签到,获得积分20
33秒前
Astoria完成签到,获得积分10
38秒前
科研通AI6应助Suda采纳,获得10
39秒前
LL完成签到,获得积分10
39秒前
科研通AI6应助江江采纳,获得10
45秒前
小王完成签到 ,获得积分10
48秒前
哈比人linling完成签到,获得积分10
49秒前
57秒前
乐观的洋葱完成签到,获得积分10
1分钟前
1分钟前
zzcres完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lw发布了新的文献求助10
1分钟前
1分钟前
个性半山完成签到 ,获得积分10
1分钟前
piglet完成签到 ,获得积分10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
热心树叶应助lw采纳,获得30
1分钟前
1分钟前
乐乐应助wcc采纳,获得10
1分钟前
翊嘉完成签到 ,获得积分10
1分钟前
忧虑的安青完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509353
求助须知:如何正确求助?哪些是违规求助? 4604314
关于积分的说明 14489571
捐赠科研通 4539026
什么是DOI,文献DOI怎么找? 2487276
邀请新用户注册赠送积分活动 1469709
关于科研通互助平台的介绍 1441934