Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
醉生梦死发布了新的文献求助10
刚刚
1秒前
灵兰完成签到,获得积分10
1秒前
科研通AI6应助lankeren采纳,获得10
1秒前
Li发布了新的文献求助10
1秒前
领导范儿应助刘桑桑采纳,获得10
2秒前
2秒前
生动娩发布了新的文献求助10
2秒前
JW完成签到,获得积分10
3秒前
3秒前
zsj完成签到 ,获得积分10
3秒前
陀思妥耶夫斯基完成签到 ,获得积分10
4秒前
白鲜香精发布了新的文献求助10
5秒前
5秒前
wowo发布了新的文献求助30
5秒前
FashionBoy应助不是山谷采纳,获得10
5秒前
十二完成签到,获得积分10
6秒前
6秒前
小卜同学完成签到,获得积分10
7秒前
zoe_zzz完成签到,获得积分10
7秒前
卡卡发布了新的文献求助10
8秒前
8秒前
JamesPei应助盛夏之末采纳,获得10
9秒前
冰冰完成签到 ,获得积分10
9秒前
科研通AI6应助念梦采纳,获得10
9秒前
思源应助琪琪采纳,获得10
9秒前
科研通AI6应助zmr123采纳,获得10
9秒前
9秒前
xiaofeidiao发布了新的文献求助10
12秒前
liuerlong发布了新的文献求助10
12秒前
12秒前
liiiiiii发布了新的文献求助10
13秒前
13秒前
lbuild完成签到,获得积分10
14秒前
14秒前
努力看文献的小杨完成签到,获得积分10
15秒前
英姑应助白鲜香精采纳,获得10
15秒前
缥缈的天奇完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266