Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼谷秋发布了新的文献求助10
1秒前
重要问筠发布了新的文献求助10
1秒前
简简单单完成签到,获得积分10
1秒前
cyy完成签到,获得积分20
1秒前
乐乐应助岳勇震采纳,获得10
1秒前
林海发布了新的文献求助10
1秒前
深情安青应助尘末以末采纳,获得10
2秒前
sleeeeeeeep发布了新的文献求助10
2秒前
3秒前
一点完成签到,获得积分10
3秒前
老高完成签到 ,获得积分10
3秒前
高高完成签到,获得积分10
3秒前
3秒前
3秒前
Ava应助轶6采纳,获得10
3秒前
酷波er应助蒋大饼采纳,获得10
3秒前
4秒前
4秒前
李欣超发布了新的文献求助10
4秒前
Augenstern发布了新的文献求助10
4秒前
4秒前
向向发布了新的文献求助10
4秒前
远志发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
李健的小迷弟应助zxh采纳,获得10
5秒前
123.完成签到 ,获得积分10
5秒前
6秒前
6秒前
马晓玲发布了新的文献求助10
6秒前
小蘑菇应助悲凉的雪珍采纳,获得10
7秒前
困敦发布了新的文献求助10
7秒前
mengtingmei应助YAOYAO采纳,获得10
8秒前
8秒前
不安子默完成签到,获得积分10
8秒前
8秒前
shi发布了新的文献求助10
8秒前
sxystc发布了新的文献求助10
8秒前
8秒前
独特背包完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330