Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助amazeman111采纳,获得10
1秒前
1秒前
张沐泽完成签到,获得积分10
1秒前
ee完成签到,获得积分10
2秒前
Ava应助yyyyy语言采纳,获得10
3秒前
淡然千山完成签到 ,获得积分10
3秒前
芋泥啵啵发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
陈敏娇完成签到,获得积分10
6秒前
晟至完成签到,获得积分10
6秒前
6秒前
6秒前
仄言发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
陈敏娇发布了新的文献求助10
9秒前
gh完成签到,获得积分10
10秒前
yaruyou发布了新的文献求助10
11秒前
1234发布了新的文献求助10
11秒前
乐乐应助科研菜狗采纳,获得10
12秒前
13秒前
14秒前
充电宝应助hinata采纳,获得10
14秒前
量子星尘发布了新的文献求助10
20秒前
cqsjy完成签到,获得积分10
21秒前
21秒前
认真柠檬完成签到,获得积分10
22秒前
23秒前
Owen应助蟑先生采纳,获得10
23秒前
Maestro_S应助内向的绿采纳,获得10
24秒前
ding应助头哥采纳,获得20
27秒前
科研通AI6.1应助苏yj采纳,获得10
27秒前
蟑先生完成签到 ,获得积分10
30秒前
30秒前
Hus11221完成签到,获得积分10
33秒前
丘比特应助Lignin采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601