已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 经济 管理 社会学 社会科学
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
namseok完成签到,获得积分20
2秒前
4秒前
蘑菇腿发布了新的文献求助10
6秒前
明天的你完成签到 ,获得积分10
6秒前
6秒前
正直的夏真完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
11秒前
11秒前
Lucas应助tgg采纳,获得10
12秒前
12秒前
Ayao发布了新的文献求助20
13秒前
15秒前
Takahara2000应助诚心如意采纳,获得10
16秒前
小人物的坚持完成签到 ,获得积分10
17秒前
18秒前
wik发布了新的文献求助10
18秒前
wangxiaoqing完成签到,获得积分10
19秒前
科研通AI6应助宇心采纳,获得10
20秒前
21秒前
可闲发布了新的文献求助10
23秒前
wangxiaoqing发布了新的文献求助10
24秒前
Zcl发布了新的文献求助10
25秒前
Annnnnnnnnn完成签到,获得积分10
26秒前
浮游应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
er123721应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
30秒前
31秒前
小蘑菇应助Joy采纳,获得30
35秒前
理学猫发布了新的文献求助10
36秒前
顾矜应助悦耳如彤采纳,获得10
37秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794