Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

计算机科学 推荐系统 个性化 任务(项目管理) 语义学(计算机科学) 元数据 自然语言 语言模型 情报检索 模式 自然语言处理 人工智能 人机交互 万维网 程序设计语言 社会科学 管理 社会学 经济
作者
Shijie Geng,Shuchang Liu,Zuohui Fu,Yingqiang Ge,Yongfeng Zhang
标识
DOI:10.1145/3523227.3546767
摘要

For a long time, different recommendation tasks require designing task-specific architectures and training objectives. As a result, it is hard to transfer the knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format — natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several benchmarks, we conduct experiments to show the effectiveness of P5. To help advance future research on Recommendation as Language Processing (RLP), Personalized Foundation Models (PFM), and Universal Recommendation Engine (URE), we release the source code, dataset, prompts, and pretrained P5 model at https://github.com/jeykigung/P5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
三土发布了新的文献求助10
3秒前
Jasper应助研友_ndDGVn采纳,获得10
3秒前
Neko应助anglervlf采纳,获得20
3秒前
3秒前
虚幻小凡发布了新的文献求助10
4秒前
tcl发布了新的文献求助10
4秒前
宿雨发布了新的文献求助10
4秒前
4秒前
zzzy完成签到,获得积分10
5秒前
wanci应助科研怪采纳,获得10
5秒前
酷波er应助阿福采纳,获得10
5秒前
6秒前
6秒前
7秒前
儒雅HR完成签到,获得积分10
7秒前
7秒前
8秒前
度yu完成签到,获得积分10
8秒前
8秒前
上官若男应助鲨鱼采纳,获得10
9秒前
耳机单蹦发布了新的文献求助10
9秒前
key关闭了key文献求助
9秒前
9秒前
小巧亦竹发布了新的文献求助10
9秒前
猫好好发布了新的文献求助20
10秒前
ning完成签到,获得积分20
10秒前
吴嘉琰发布了新的文献求助10
10秒前
万能图书馆应助xiaoyan采纳,获得10
10秒前
11秒前
我是老大应助www采纳,获得10
11秒前
英俊的铭应助MengpoZhao采纳,获得10
11秒前
搜集达人应助Yapi采纳,获得10
11秒前
11秒前
11秒前
11秒前
sss关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994