亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based classification of damage-induced acoustic emission signals in UHPC

声发射 材料科学 声学 复合材料 物理
作者
Rui Zhang,Xiaofeng Yan,Li Guo
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:356: 129285-129285 被引量:5
标识
DOI:10.1016/j.conbuildmat.2022.129285
摘要

• Damage-induced AE signals in UHPC were originally classified into five categories. • The AE dataset was built after pseudo-labeling and mix-up data augmentation. • CNN-based classification models were trained with time–frequency information. • CNN-classified AE signals were utilized for damage analysis of UHPC in tension. Acoustic emission (AE) is advantageous in studying and monitoring the damage state of UHPC, and its performance can be further improved if various damage-induced AE signals are classified accurately. The deep learning method is promising to enhance the classification accuracy, but it is limited by the absence of the corresponding AE dataset. In this study, fiber pullout tests and direct tension tests (DTTs) were performed to explore the time–frequency features of various damage-induced AE signals in UHPC. The AE sources can be classified into five categories: matrix cracking, fiber debonding, fiber sliding, fiber scraping, and matrix spalling. A corresponding AE dataset was established after manual pre-labeling, pseudo-labeling with transfer learning, and mix-up data augmenting. Several lightweight convolutional neural networks (CNNs) were trained from scratch based on the dataset, with modified time–frequency spectrograms as data input. The performances of CNN-based classification models are superior to traditional shallow-learning methods. The popular lightweight CNN structure of ResNet18 achieves the highest overall accuracy of 93.94% among adopted CNN structures such as GoogleNet, ResNet18, EfficientNet-b0, and MobileNetV2. The AE signal classification results of DTTs show that fiber-pullout damage and matrix cracking occur intensively at the strain-hardening phase and increase with fiber content. That suggests the increasing fiber bridging and multi-crack propagation in the uniaxial tension of UHPC with higher fiber content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助feifei采纳,获得10
9秒前
23秒前
51秒前
56秒前
1分钟前
hongtao完成签到 ,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
1分钟前
可爱的函函应助zzzsh采纳,获得10
1分钟前
1分钟前
guoze发布了新的文献求助10
1分钟前
snail完成签到,获得积分10
2分钟前
2分钟前
556发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
guoze发布了新的文献求助30
2分钟前
爱听歌书芹关注了科研通微信公众号
2分钟前
平淡如天完成签到,获得积分10
3分钟前
KSung完成签到 ,获得积分10
3分钟前
大模型应助Jason采纳,获得10
3分钟前
tishe7发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张小美发布了新的文献求助10
3分钟前
半城微凉应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
tishe7完成签到,获得积分10
3分钟前
feifei发布了新的文献求助10
3分钟前
所所应助张小美采纳,获得10
3分钟前
乐乐应助qls123采纳,获得10
3分钟前
qls123完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
岸在海的深处完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
qls123发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214