材料科学
阳极
法拉第效率
锂(药物)
石墨烯
沉积(地质)
介孔材料
多孔性
金属
氧化物
化学工程
纳米技术
复合材料
冶金
电极
物理化学
内分泌学
古生物学
医学
催化作用
工程类
化学
生物化学
沉积物
生物
作者
Haiting Shi,Mengfan Pei,Shuo Wang,Fengting Yao,Yuanhua Xia,Zhiwei Xu,Shengkai Liu,Ruiqi Shao,Wei Wang,Shuaitong Liang
标识
DOI:10.1002/admt.202200256
摘要
Abstract Nonuniform Li + flux and lithiophilic sites cause uneven lithium deposition, which impedes the application of lithium metal batteries. Herein, a reduced graphene oxide (rGO)/Ti 3 C 2 T x lattice with periodic printed holes is fabricated by 3D printing. Mesoporous structures formed by regularly assembled nanosheets provide abundant lithiophilic sites. The Li + flux is regulated by the periodic printed holes prepared by 3D printing. The deposition of lithium is homogenized by the synergistic effect of uniform Li + flux and abundant lithiophilic sites. The resultant 3D‐printed Li anode has excellent cycling stability up to 3000 h and a high average Coulombic efficiency of 98% after a long lifespan of ≈1000 h. Our work highlights the effect of the correlation between macroscopic and microscopic pores formed by 3D printing on inhibiting lithium dendrites, providing a novel pathway for highly 3D‐printed stable lithium metal anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI