Feature level fusion framework for multimodal biometric system based on CCA with SVM classifier and cosine similarity measure

人工智能 模式识别(心理学) 计算机科学 典型相关 支持向量机 生物识别 分类器(UML) 降维 特征(语言学) 特征选择 线性判别分析 特征向量 主成分分析 特征提取 语言学 哲学
作者
Chetana Kamlaskar,Aditya Abhyankar
出处
期刊:Australian journal of electrical and electronics engineering [Informa]
卷期号:20 (2): 205-218 被引量:2
标识
DOI:10.1080/1448837x.2022.2129147
摘要

The multimodal biometric system using feature level fusion offers more accurate and reliable recognition performance than the unimodal system. But in practice, feature level fusion is challenging to perform when biometric modalities have heterogeneous and incompatible feature representation and enforce the final decision more confidently. One of the main concerns in the fusion of features is to drive the highly discriminatory representation amongst different biometric modalities. This paper aims to design a framework for an efficient feature level fusion based on canonical correlation analysis (CCA) with a support vector machine (SVM) classifier to get a highly discriminant and affine invariant fused feature vector. The principal component analysis (PCA) + CCA subspace approach is used to achieve dimensionality reduction and feature fusion in a coherent manner, This approach eliminates the need for a complex matcher/classifier design to process a fused feature vector and also reduces computational complexity. The experimental findings for the SDUMLA-HMT multimodal database demonstrate that CCA on the extracted feature sets of iris and fingerprint modalities results in reasonably better multimodal classification accuracy with a substantial reduction in the feature dimensions. Using SVM, we achieved a classification accuracy of 100%. In this paper furthermore, three different distance measures are explored to test the efficacy of the proposed CCA-based feature level fusion approach. The best recognition performance is achieved in terms of an equal error rate (EER) of 0.176% for the cosine similarity measure. We also compared the proposed approach with the match score level fusion method. The proposed feature level fusion approach excels the recognition performance in contrast to the other literature approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jory应助科研小王子采纳,获得10
刚刚
科研醉汉完成签到,获得积分10
刚刚
翟翟完成签到,获得积分10
刚刚
andy发布了新的文献求助10
刚刚
华夫饼完成签到,获得积分10
1秒前
sindex完成签到,获得积分10
1秒前
LYH发布了新的文献求助10
1秒前
西瓜完成签到,获得积分10
1秒前
bkagyin应助VIEAAA采纳,获得10
2秒前
雪雪啊发布了新的文献求助10
2秒前
lulu完成签到,获得积分10
3秒前
小小完成签到 ,获得积分10
3秒前
hunya完成签到,获得积分10
3秒前
4秒前
Zx_1993应助hbhbj采纳,获得10
4秒前
4秒前
空格TNT完成签到 ,获得积分10
4秒前
Yummy发布了新的文献求助10
4秒前
自觉的书蝶完成签到,获得积分10
5秒前
黑熊精完成签到,获得积分10
5秒前
健康的老六完成签到,获得积分10
6秒前
Kn关闭了Kn文献求助
6秒前
Denny完成签到,获得积分10
6秒前
wfy完成签到,获得积分10
6秒前
丸子圆完成签到,获得积分10
7秒前
大气的氧发布了新的文献求助10
7秒前
Ronnie发布了新的文献求助10
7秒前
Chelsea完成签到,获得积分10
8秒前
杨蒙博发布了新的文献求助30
8秒前
研友_VZG7GZ应助LT采纳,获得10
8秒前
LYH完成签到,获得积分10
8秒前
可爱的新柔完成签到,获得积分10
8秒前
wensir完成签到,获得积分10
9秒前
9秒前
luchang123qq发布了新的文献求助10
9秒前
9秒前
英俊的高跟鞋完成签到,获得积分10
9秒前
深情安青应助雪雪啊采纳,获得10
9秒前
今昔完成签到,获得积分10
10秒前
火域冥完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413904
求助须知:如何正确求助?哪些是违规求助? 4530767
关于积分的说明 14125053
捐赠科研通 4446058
什么是DOI,文献DOI怎么找? 2439334
邀请新用户注册赠送积分活动 1431442
关于科研通互助平台的介绍 1409123