Feature level fusion framework for multimodal biometric system based on CCA with SVM classifier and cosine similarity measure

人工智能 模式识别(心理学) 计算机科学 典型相关 支持向量机 生物识别 分类器(UML) 降维 特征(语言学) 特征选择 线性判别分析 特征向量 主成分分析 特征提取 语言学 哲学
作者
Chetana Kamlaskar,Aditya Abhyankar
出处
期刊:Australian journal of electrical and electronics engineering [Informa]
卷期号:20 (2): 205-218 被引量:2
标识
DOI:10.1080/1448837x.2022.2129147
摘要

The multimodal biometric system using feature level fusion offers more accurate and reliable recognition performance than the unimodal system. But in practice, feature level fusion is challenging to perform when biometric modalities have heterogeneous and incompatible feature representation and enforce the final decision more confidently. One of the main concerns in the fusion of features is to drive the highly discriminatory representation amongst different biometric modalities. This paper aims to design a framework for an efficient feature level fusion based on canonical correlation analysis (CCA) with a support vector machine (SVM) classifier to get a highly discriminant and affine invariant fused feature vector. The principal component analysis (PCA) + CCA subspace approach is used to achieve dimensionality reduction and feature fusion in a coherent manner, This approach eliminates the need for a complex matcher/classifier design to process a fused feature vector and also reduces computational complexity. The experimental findings for the SDUMLA-HMT multimodal database demonstrate that CCA on the extracted feature sets of iris and fingerprint modalities results in reasonably better multimodal classification accuracy with a substantial reduction in the feature dimensions. Using SVM, we achieved a classification accuracy of 100%. In this paper furthermore, three different distance measures are explored to test the efficacy of the proposed CCA-based feature level fusion approach. The best recognition performance is achieved in terms of an equal error rate (EER) of 0.176% for the cosine similarity measure. We also compared the proposed approach with the match score level fusion method. The proposed feature level fusion approach excels the recognition performance in contrast to the other literature approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GUNIANLIU发布了新的文献求助10
刚刚
乐观发布了新的文献求助10
1秒前
章鱼完成签到,获得积分10
3秒前
爆米花应助醉爱吃小孩采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助wy采纳,获得10
6秒前
6秒前
8秒前
听寒发布了新的文献求助10
9秒前
Faith完成签到 ,获得积分10
10秒前
充电宝应助乐观采纳,获得10
10秒前
隐形曼青应助酰胺back采纳,获得30
10秒前
橙子发布了新的文献求助10
11秒前
禹丹烟发布了新的文献求助10
12秒前
12秒前
Hou发布了新的文献求助10
13秒前
13秒前
14秒前
缓缓完成签到,获得积分20
14秒前
15秒前
齐朕完成签到,获得积分20
16秒前
Buduan发布了新的文献求助50
16秒前
我爱学习完成签到 ,获得积分10
18秒前
不想写文章完成签到 ,获得积分10
19秒前
19秒前
WSND发布了新的文献求助10
20秒前
是是是咯发布了新的文献求助10
21秒前
lyy完成签到,获得积分10
21秒前
le发布了新的文献求助20
23秒前
23秒前
迷路逍遥发布了新的文献求助10
23秒前
小巧含蕊完成签到 ,获得积分20
25秒前
一条蛆完成签到,获得积分10
26秒前
Buduan完成签到,获得积分10
26秒前
26秒前
28秒前
圆圆发布了新的文献求助10
29秒前
wy发布了新的文献求助10
32秒前
terminus完成签到,获得积分10
32秒前
yyyy发布了新的文献求助10
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643473
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447