同质结
材料科学
吸附
催化作用
光催化
化学物理
钨
工作职能
试剂
串联
化学工程
纳米技术
异质结
物理化学
图层(电子)
光电子学
化学
复合材料
工程类
冶金
生物化学
作者
Wei Wang,Jingcong Hu,Teng Ge,Fang Chen,Yue Lu,Runhua Chen,Hongjun Zhang,Bangjiao Ye,Shengyao Wang,Yihe Zhang,Tianyi Ma,Hongwei Huang
标识
DOI:10.1002/adma.202302538
摘要
Abstract The slow charge dynamics and large activation energy of CO 2 severely hinder the efficiency of CO 2 photoreduction. Defect engineering is a well‐established strategy, while the function of common zero‐dimensional defects is always restricted to promoting surface adsorption. In this work, a gradient layer of tungsten vacancies with a thickness of 3–4 nm is created across Bi 2 WO 6 nanosheets. This gradient layer enables the formation of an inner‐to‐outer tandem homojunction with an internal electric field, which provides a strong driving force for the migration of photoelectrons from the bulk to the surface. Meanwhile, W vacancies change the coordination environment around O and W atoms, leading to an alteration in the basic sites and the mode of CO 2 adsorption from weak/strong adsorption to moderate adsorption, which ultimately decreases the formation barrier of the key intermediate *COOH and facilitates the conversion thermodynamics for CO 2 . Without any cocatalyst and sacrificial reagent, W‐vacant Bi 2 WO 6 shows an outstanding photocatalytic CO 2 reduction performance with a CO production rate of 30.62 µmol g −1 h −1 , being one of the best catalysts in similar reaction systems. This study reveals that gradient vacancies as a new type of defect will show huge potential in regulating charge dynamics and catalytic reaction thermodynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI