A transformer-based deep neural network model for SSVEP classification

人工智能 计算机科学 人工神经网络 变压器 模式识别(心理学) 工程类 电压 电气工程
作者
Jianbo Chen,Yangsong Zhang,Yudong Pan,Peng Xu,Cuntai Guan
出处
期刊:Neural Networks [Elsevier]
卷期号:164: 521-534 被引量:27
标识
DOI:10.1016/j.neunet.2023.04.045
摘要

Steady-state visual evoked potential (SSVEP) is one of the most commonly used control signals in the brain-computer interface (BCI) systems. However, the conventional spatial filtering methods for SSVEP classification highly depend on the subject-specific calibration data. The need for the methods that can alleviate the demand for the calibration data becomes urgent. In recent years, developing the methods that can work in inter-subject scenario has become a promising new direction. As a popular deep learning model nowadays, Transformer has been used in EEG signal classification tasks owing to its excellent performance. Therefore, in this study, we proposed a deep learning model for SSVEP classification based on Transformer architecture in inter-subject scenario, termed as SSVEPformer, which was the first application of Transformer on the SSVEP classification. Inspired by previous studies, we adopted the complex spectrum features of SSVEP data as the model input, which could enable the model to simultaneously explore the spectral and spatial information for classification. Furthermore, to fully utilize the harmonic information, an extended SSVEPformer based on the filter bank technology (FB-SSVEPformer) was proposed to improve the classification performance. Experiments were conducted using two open datasets (Dataset 1: 10 subjects, 12 targets; Dataset 2: 35 subjects, 40 targets). The experimental results show that the proposed models could achieve better results in terms of classification accuracy and information transfer rate than other baseline methods. The proposed models validate the feasibility of deep learning models based on Transformer architecture for SSVEP data classification, and could serve as potential models to alleviate the calibration procedure in the practical application of SSVEP-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
153495159完成签到,获得积分10
1秒前
杂化轨道退役研究员完成签到,获得积分10
2秒前
雪白的夜香完成签到,获得积分10
2秒前
Lenard Guma完成签到 ,获得积分10
3秒前
向上发布了新的文献求助10
3秒前
Lynn完成签到,获得积分10
3秒前
loki完成签到,获得积分10
4秒前
优雅莞完成签到,获得积分10
5秒前
科研通AI2S应助xiaofu采纳,获得10
5秒前
5秒前
YangSY完成签到,获得积分10
6秒前
直率书芹完成签到,获得积分10
6秒前
尼斯卡完成签到,获得积分10
7秒前
三桥完成签到,获得积分10
8秒前
晶莹黎完成签到,获得积分10
9秒前
pp完成签到 ,获得积分10
9秒前
qiaorankongling完成签到,获得积分10
10秒前
11秒前
奋斗小公主完成签到,获得积分10
11秒前
DY完成签到,获得积分10
13秒前
生动的沛芹完成签到,获得积分10
13秒前
淡定完成签到,获得积分20
13秒前
科研通AI2S应助向上采纳,获得10
14秒前
英姑应助向上采纳,获得10
14秒前
xiaodao完成签到,获得积分10
14秒前
WenzongLai完成签到,获得积分10
14秒前
Asher发布了新的文献求助10
14秒前
xuzhu0907完成签到,获得积分10
16秒前
cassie_kk完成签到 ,获得积分10
16秒前
淡定发布了新的文献求助10
17秒前
南漂完成签到,获得积分10
17秒前
郭一鸣完成签到,获得积分10
18秒前
18秒前
LL完成签到,获得积分10
18秒前
哭泣恋风完成签到 ,获得积分10
19秒前
杨老师完成签到 ,获得积分10
19秒前
科研通AI2S应助zhl采纳,获得10
19秒前
LW完成签到,获得积分10
20秒前
我在人间喝咖啡完成签到,获得积分10
21秒前
Ton汤完成签到,获得积分10
21秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830396
关于积分的说明 7976868
捐赠科研通 2491986
什么是DOI,文献DOI怎么找? 1329164
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954