亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer-based deep neural network model for SSVEP classification

人工智能 计算机科学 人工神经网络 变压器 模式识别(心理学) 工程类 电压 电气工程
作者
Jianbo Chen,Yangsong Zhang,Yudong Pan,Peng Xu,Cuntai Guan
出处
期刊:Neural Networks [Elsevier]
卷期号:164: 521-534 被引量:27
标识
DOI:10.1016/j.neunet.2023.04.045
摘要

Steady-state visual evoked potential (SSVEP) is one of the most commonly used control signals in the brain-computer interface (BCI) systems. However, the conventional spatial filtering methods for SSVEP classification highly depend on the subject-specific calibration data. The need for the methods that can alleviate the demand for the calibration data becomes urgent. In recent years, developing the methods that can work in inter-subject scenario has become a promising new direction. As a popular deep learning model nowadays, Transformer has been used in EEG signal classification tasks owing to its excellent performance. Therefore, in this study, we proposed a deep learning model for SSVEP classification based on Transformer architecture in inter-subject scenario, termed as SSVEPformer, which was the first application of Transformer on the SSVEP classification. Inspired by previous studies, we adopted the complex spectrum features of SSVEP data as the model input, which could enable the model to simultaneously explore the spectral and spatial information for classification. Furthermore, to fully utilize the harmonic information, an extended SSVEPformer based on the filter bank technology (FB-SSVEPformer) was proposed to improve the classification performance. Experiments were conducted using two open datasets (Dataset 1: 10 subjects, 12 targets; Dataset 2: 35 subjects, 40 targets). The experimental results show that the proposed models could achieve better results in terms of classification accuracy and information transfer rate than other baseline methods. The proposed models validate the feasibility of deep learning models based on Transformer architecture for SSVEP data classification, and could serve as potential models to alleviate the calibration procedure in the practical application of SSVEP-based BCI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
33秒前
bkagyin应助橘子采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
乐乐应助求学狗采纳,获得10
46秒前
53秒前
求学狗发布了新的文献求助10
59秒前
ceeray23发布了新的文献求助200
1分钟前
艾莉完成签到 ,获得积分10
1分钟前
求学狗完成签到,获得积分10
1分钟前
1分钟前
热情依白发布了新的文献求助10
1分钟前
完美世界应助axiao采纳,获得10
1分钟前
1分钟前
香菜张完成签到,获得积分10
1分钟前
axiao发布了新的文献求助10
1分钟前
axiao完成签到,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
青萍子林完成签到,获得积分10
3分钟前
大个应助Ahan采纳,获得10
3分钟前
ZIVON完成签到,获得积分10
3分钟前
3分钟前
Ahan发布了新的文献求助10
3分钟前
汪洋一叶完成签到,获得积分10
4分钟前
科目三应助ceeray23采纳,获得20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502942
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464678
捐赠科研通 4532264
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439766