A transformer-based deep neural network model for SSVEP classification

人工智能 计算机科学 人工神经网络 变压器 模式识别(心理学) 工程类 电压 电气工程
作者
Jianbo Chen,Yangsong Zhang,Yudong Pan,Peng Xu,Cuntai Guan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:164: 521-534 被引量:27
标识
DOI:10.1016/j.neunet.2023.04.045
摘要

Steady-state visual evoked potential (SSVEP) is one of the most commonly used control signals in the brain-computer interface (BCI) systems. However, the conventional spatial filtering methods for SSVEP classification highly depend on the subject-specific calibration data. The need for the methods that can alleviate the demand for the calibration data becomes urgent. In recent years, developing the methods that can work in inter-subject scenario has become a promising new direction. As a popular deep learning model nowadays, Transformer has been used in EEG signal classification tasks owing to its excellent performance. Therefore, in this study, we proposed a deep learning model for SSVEP classification based on Transformer architecture in inter-subject scenario, termed as SSVEPformer, which was the first application of Transformer on the SSVEP classification. Inspired by previous studies, we adopted the complex spectrum features of SSVEP data as the model input, which could enable the model to simultaneously explore the spectral and spatial information for classification. Furthermore, to fully utilize the harmonic information, an extended SSVEPformer based on the filter bank technology (FB-SSVEPformer) was proposed to improve the classification performance. Experiments were conducted using two open datasets (Dataset 1: 10 subjects, 12 targets; Dataset 2: 35 subjects, 40 targets). The experimental results show that the proposed models could achieve better results in terms of classification accuracy and information transfer rate than other baseline methods. The proposed models validate the feasibility of deep learning models based on Transformer architecture for SSVEP data classification, and could serve as potential models to alleviate the calibration procedure in the practical application of SSVEP-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
李Tt完成签到,获得积分10
1秒前
文静发布了新的文献求助10
2秒前
陈住气发布了新的文献求助10
2秒前
chunjianghua完成签到,获得积分10
2秒前
畅快手套发布了新的文献求助10
3秒前
炙热一凤应助hahaha采纳,获得20
3秒前
NexusExplorer应助666采纳,获得10
4秒前
FashionBoy应助油麦采纳,获得10
4秒前
Youdge发布了新的文献求助20
4秒前
晨晨完成签到 ,获得积分10
5秒前
5秒前
kbd发布了新的文献求助10
6秒前
6秒前
英俊的铭应助cumtlhy88采纳,获得10
8秒前
150350完成签到,获得积分10
8秒前
8秒前
小马甲应助甜美奇异果采纳,获得10
9秒前
9秒前
pzz发布了新的文献求助10
10秒前
10秒前
YY完成签到,获得积分10
11秒前
刻苦大门完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
zw发布了新的文献求助30
11秒前
科研通AI5应助antarctica采纳,获得10
12秒前
12秒前
DC发布了新的文献求助10
13秒前
Jasper应助户户得振采纳,获得10
14秒前
不仅要发文章还有发财完成签到,获得积分10
14秒前
000发布了新的文献求助10
15秒前
16秒前
16秒前
我尼玛币发布了新的文献求助10
16秒前
油麦发布了新的文献求助10
17秒前
17秒前
17秒前
pzz完成签到,获得积分10
17秒前
666完成签到,获得积分20
18秒前
屈屈发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113157
求助须知:如何正确求助?哪些是违规求助? 4320580
关于积分的说明 13462775
捐赠科研通 4151924
什么是DOI,文献DOI怎么找? 2275014
邀请新用户注册赠送积分活动 1276951
关于科研通互助平台的介绍 1215136