抗坏血酸
化学
涂层
氢键
壳聚糖
抗氧化剂
化学工程
食品科学
有机化学
分子
工程类
作者
Jingyi Wang,Wenjuan Wu,Chao Wang,Shumin He,Zuwei Yu,Muci Wu,Qian Wu
标识
DOI:10.1016/j.ijbiomac.2023.124668
摘要
Carboxymethyl chitosan (CMCS) has antibacterial activity and coating-forming ability. Under the impact of noncovalent interactions, the bioactivity and functionality of CMCS may be positively affected by the coexistence of flavonoids. This study investigated the effect of a CMCS coating incorporated with flavonoids from guava (Psidium guajava L. cv. Carmine) leaf (GLF) on the refrigeration of fresh-cut apples for preservation. Compared with the CMCS group, apples treated with the CMCS-GLF coating showed better quality (weight loss, browning index, firmness), nutritional value (ascorbic acid and total phenolic content), and microbial safety during storage. The mechanism study indicated that the hydrogen bonding, electrostatic, and hydrophobic interactions between CMCS and GLF (the carboxymethyl moiety of CMCS had the highest response priority and binding strength of the interaction with -C-O of GLF) changed the surface charge distribution and microstructure of CMCS, and increased its molecular weight, particle size, viscosity, and hydrophobicity. Thus, the CMCS-GLF coating exerted better bioactivities (antibacterial and antioxidant activity), and its film showed better mechanical and barrier properties. These results revealed that the noncovalent interaction with GLF could modify the physiochemical properties of CMCS, which was beneficial to improve its bioactivity and application value in fresh fruit preservation.
科研通智能强力驱动
Strongly Powered by AbleSci AI