亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Score Level Fusion for Multi-Modal Biometric System with Optimised Deep Ensemble Technique

生物识别 人工智能 计算机科学 模式识别(心理学) 掌纹 情态动词 模态(人机交互) 指纹(计算) 人工神经网络 认证(法律) 卷积神经网络 特征提取 深度学习 特征(语言学) 语言学 化学 哲学 计算机安全 高分子化学
作者
M. R. Bharath,K. A. Radhakrishna Rao
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:11 (5): 1906-1920 被引量:1
标识
DOI:10.1080/21681163.2023.2199888
摘要

Multi-modal biometric refers to the use of various biometric indicators for individual identification by personal recognition systems. When compared to unimodal biometrics, which uses only one biometric data, such as a fingerprint, face, palm print or iris, multi-modal authentication offers a higher degree of authentication. A new optimal score value that fuses deep learning and multi-modal biometrics would be produced in the project study. A proposed approach was split into three main groups: feature extraction, pre-processing and ensemble recognition. First, median filtering and ROI procedures were utilised for pre-processing-captured original biometric information for the wrist, dorsal, palm vein and palm print. Pertinent features are then retrieved from the corresponding preprocessed images for every modality. These extracted features are subjected to an imposter or genuine determination. Neural Network 1, Neural Network 2 and Deep Convolution Neural Network create a new deep ensemble model in the event of a forgery or accurate estimation (DCNN). The outputs of NN1 and NN2 are the inputs to DCNN, which provides information on whether the biometric data are authentic or not. Finally, the results are fine-tuned by the weight of DCNN utilising new hybrid optimisation scheme referred as Butterfly combined Tunicate Swarm Optimisation (BTSA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34举报ttt求助涉嫌违规
1秒前
3秒前
吴巧发布了新的文献求助10
9秒前
喜悦的小土豆完成签到 ,获得积分10
21秒前
21秒前
Owen应助LXM采纳,获得10
33秒前
赘婿应助Candy采纳,获得10
39秒前
45秒前
puuuunido发布了新的文献求助30
50秒前
52秒前
pysa发布了新的文献求助10
57秒前
上官若男应助荼蘼采纳,获得10
1分钟前
1分钟前
大模型应助桔梗采纳,获得10
1分钟前
decade完成签到,获得积分10
1分钟前
852应助吴巧采纳,获得10
1分钟前
1分钟前
谦让的苡完成签到 ,获得积分10
1分钟前
Zoom应助科研通管家采纳,获得30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
科目三应助ZYB采纳,获得10
2分钟前
可爱的函函应助ZYB采纳,获得10
2分钟前
2分钟前
1186发布了新的文献求助10
2分钟前
李娇完成签到 ,获得积分10
3分钟前
3分钟前
1186完成签到,获得积分20
3分钟前
3分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
只是虚瘦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI5应助真实的依波采纳,获得30
3分钟前
3分钟前
饱满的之瑶完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983309
求助须知:如何正确求助?哪些是违规求助? 4234666
关于积分的说明 13189304
捐赠科研通 4026820
什么是DOI,文献DOI怎么找? 2202884
邀请新用户注册赠送积分活动 1215210
关于科研通互助平台的介绍 1132094