膜
材料科学
气体分离
渗透
增塑剂
纤维
中空纤维膜
化学工程
聚酰亚胺
聚合物
聚合
高分子化学
复合材料
化学
生物化学
图层(电子)
工程类
作者
Zhenyuan Li,Tianliang Han,Wei Lai,Jie Ma,Yang Zhang,Qi Wu,Can Wang,Chunfa Liao,Shuangjiang Luo
标识
DOI:10.1016/j.memsci.2023.122126
摘要
Herein, we develop and investigate the performance of defect-free hollow fiber membranes (HFMs) based on a novel 6FDA-mPDA0.65-DABA0.3-TFMB0.05 copolyimide for helium separation from multi-component natural gas. The copolyimide is synthesized using a two-step condensation polymerization, and the hollow fiber membranes are fabricated using a dry-jet/wet-quench spinning approach. Thermal crosslinking of hollow fiber membranes is conducted to enhance plasticization resistance. The crosslinked membranes exhibit improved He selectivity (α(He/CH4) = 259) compared to the pristine hollow fiber membrane (α(He/CH4) = 210). Gas permeation tests are performed on the pristine and crosslinked hollow fiber membranes using pure-gas and mixed-gas at various pressures. The results demonstrate that the crosslinked membranes effectively resist plasticization even under high-pressure gas feeds containing CO2, light hydrocarbons, and heavy hydrocarbons. In contrast, the uncrosslinked membranes experience plasticization, dramatically decreasing selectivity. The findings provide valuable insights into the plasticization behavior of different impurity compounds in hollow fiber membranes and highlight the potential of thermal crosslinking as an effective strategy to improve the plasticization resistance of HFMs for He recovery. These defect-free and plasticization-resistant membranes hold promise for efficient He recovery from mixed-gas streams, offering a viable and energy-efficient alternative to traditional separation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI