Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit

计算机科学 均方误差 卷积神经网络 超参数 人工智能 稳健性(进化) 电池组 模式识别(心理学) 电池(电) 数学 统计 生物化学 化学 功率(物理) 物理 量子力学 基因
作者
Yahia Mazzi,Hicham Ben Sassi,Fatima Errahimi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107199-107199 被引量:26
标识
DOI:10.1016/j.engappai.2023.107199
摘要

This paper proposes a real-time state of health (SOH) estimation model based on a deep learning (DL) framework. The proposed model is a combination of two different architectures; a one-dimensional convolutional neural network (1D-CNN) and a bidirectional gated recurrent unit (BiGRU). The hybrid CNN-BiGRU uses the 1D CNN layers to extract pertinent features from input data and then relies on the BiGRU layers for sequence learning in both directions. To account for all SOH indicators, the proposed approach uses the current, voltage, and temperature measurements, which are readily obtainable from the electric vehicle's battery management system (BMS). This prevents the complex and time-consuming feature extraction used in most related papers. Since the hyperparameters have a significant impact on the performance of neural network models, a Bayesian Optimization (BO) technique based on the Gaussian Process (GP) was considered to tune the CNN-BiGRU model hyperparameters. Accordingly, the objective function was able to converge to a low Mean Squared Error (MSE) of 1.2×10−5 in just 19 iterations. Afterward, to verify the accuracy of the optimized model, a Lithium-ion battery dataset with several discharge profiles provided by the National Aeronautics and Space Administration (NASA) was used. The obtained results demonstrated the accuracy and robustness of the proposed method compared to other commonly used models. The CNN-BiGRU model yielded a Mean Absolute Error (MAE) of 2.080% and a root-mean-square error (RMSE) of 2.516% in the case of the battery set #C, referring to a set with 70 cycles already used at 24 °C. Additionally, the End of life (EOL) indicator error of zero cycles for the same data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白方明发布了新的文献求助10
1秒前
白方明发布了新的文献求助10
1秒前
敏感时光完成签到,获得积分10
1秒前
谁猪沉浮完成签到,获得积分10
2秒前
英姑应助烽烽烽采纳,获得10
2秒前
脑洞疼应助直率媚颜采纳,获得10
3秒前
LXT完成签到,获得积分10
3秒前
djsj留下了新的社区评论
3秒前
4秒前
上官若男应助doby采纳,获得10
6秒前
儿茶酚胺完成签到,获得积分20
7秒前
卡尔拉发布了新的文献求助20
7秒前
大模型应助慈祥的书易采纳,获得10
8秒前
8秒前
无敌大流流完成签到,获得积分10
9秒前
丘比特应助晨雾采纳,获得10
9秒前
9秒前
Grey完成签到 ,获得积分10
9秒前
aibaa发布了新的文献求助20
10秒前
liu完成签到 ,获得积分10
10秒前
10秒前
星辰大海应助咸鱼咔咔咔采纳,获得10
11秒前
桐桐应助李佰丹采纳,获得10
11秒前
11秒前
12秒前
桐桐应助轻吟采纳,获得10
13秒前
可爱的函函应助山栀茶采纳,获得30
13秒前
执着翠芙发布了新的文献求助10
14秒前
852应助pure采纳,获得10
15秒前
16秒前
烽烽烽发布了新的文献求助10
16秒前
Grandir完成签到 ,获得积分10
17秒前
聪明凝海完成签到,获得积分20
17秒前
xiaowan发布了新的文献求助10
17秒前
寂静微光完成签到 ,获得积分10
18秒前
18秒前
田様应助meikoo采纳,获得10
18秒前
传奇3应助绿毛怪采纳,获得10
19秒前
19秒前
李健应助TK采纳,获得10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797