亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit

计算机科学 均方误差 卷积神经网络 超参数 人工智能 稳健性(进化) 电池组 模式识别(心理学) 电池(电) 数学 统计 生物化学 化学 功率(物理) 物理 量子力学 基因
作者
Yahia Mazzi,Hicham Ben Sassi,Fatima Errahimi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107199-107199 被引量:26
标识
DOI:10.1016/j.engappai.2023.107199
摘要

This paper proposes a real-time state of health (SOH) estimation model based on a deep learning (DL) framework. The proposed model is a combination of two different architectures; a one-dimensional convolutional neural network (1D-CNN) and a bidirectional gated recurrent unit (BiGRU). The hybrid CNN-BiGRU uses the 1D CNN layers to extract pertinent features from input data and then relies on the BiGRU layers for sequence learning in both directions. To account for all SOH indicators, the proposed approach uses the current, voltage, and temperature measurements, which are readily obtainable from the electric vehicle's battery management system (BMS). This prevents the complex and time-consuming feature extraction used in most related papers. Since the hyperparameters have a significant impact on the performance of neural network models, a Bayesian Optimization (BO) technique based on the Gaussian Process (GP) was considered to tune the CNN-BiGRU model hyperparameters. Accordingly, the objective function was able to converge to a low Mean Squared Error (MSE) of 1.2×10−5 in just 19 iterations. Afterward, to verify the accuracy of the optimized model, a Lithium-ion battery dataset with several discharge profiles provided by the National Aeronautics and Space Administration (NASA) was used. The obtained results demonstrated the accuracy and robustness of the proposed method compared to other commonly used models. The CNN-BiGRU model yielded a Mean Absolute Error (MAE) of 2.080% and a root-mean-square error (RMSE) of 2.516% in the case of the battery set #C, referring to a set with 70 cycles already used at 24 °C. Additionally, the End of life (EOL) indicator error of zero cycles for the same data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
25秒前
41秒前
归尘发布了新的文献求助30
44秒前
bellapp完成签到 ,获得积分10
59秒前
yznfly应助归尘采纳,获得20
1分钟前
酷波er应助归尘采纳,获得10
1分钟前
华仔应助归尘采纳,获得100
1分钟前
CipherSage应助归尘采纳,获得10
1分钟前
yydragen应助归尘采纳,获得30
1分钟前
今后应助归尘采纳,获得10
1分钟前
李爱国应助归尘采纳,获得10
1分钟前
CodeCraft应助归尘采纳,获得10
1分钟前
禾安应助归尘采纳,获得20
1分钟前
完美世界应助归尘采纳,获得10
1分钟前
Lucas应助归尘采纳,获得30
1分钟前
汉堡包应助归尘采纳,获得10
1分钟前
NexusExplorer应助归尘采纳,获得10
1分钟前
英俊的铭应助归尘采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
Sandy应助科研通管家采纳,获得80
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
半城微凉关注了科研通微信公众号
1分钟前
FanFan应助归尘采纳,获得30
1分钟前
情怀应助归尘采纳,获得10
1分钟前
yar应助归尘采纳,获得10
1分钟前
科研通AI2S应助归尘采纳,获得10
1分钟前
英俊的铭应助归尘采纳,获得10
1分钟前
星辰大海应助归尘采纳,获得10
1分钟前
传奇3应助归尘采纳,获得30
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056