Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit

计算机科学 均方误差 卷积神经网络 超参数 人工智能 稳健性(进化) 电池组 模式识别(心理学) 电池(电) 数学 统计 生物化学 化学 功率(物理) 物理 量子力学 基因
作者
Yahia Mazzi,Hicham Ben Sassi,Fatima Errahimi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107199-107199 被引量:65
标识
DOI:10.1016/j.engappai.2023.107199
摘要

This paper proposes a real-time state of health (SOH) estimation model based on a deep learning (DL) framework. The proposed model is a combination of two different architectures; a one-dimensional convolutional neural network (1D-CNN) and a bidirectional gated recurrent unit (BiGRU). The hybrid CNN-BiGRU uses the 1D CNN layers to extract pertinent features from input data and then relies on the BiGRU layers for sequence learning in both directions. To account for all SOH indicators, the proposed approach uses the current, voltage, and temperature measurements, which are readily obtainable from the electric vehicle's battery management system (BMS). This prevents the complex and time-consuming feature extraction used in most related papers. Since the hyperparameters have a significant impact on the performance of neural network models, a Bayesian Optimization (BO) technique based on the Gaussian Process (GP) was considered to tune the CNN-BiGRU model hyperparameters. Accordingly, the objective function was able to converge to a low Mean Squared Error (MSE) of 1.2×10−5 in just 19 iterations. Afterward, to verify the accuracy of the optimized model, a Lithium-ion battery dataset with several discharge profiles provided by the National Aeronautics and Space Administration (NASA) was used. The obtained results demonstrated the accuracy and robustness of the proposed method compared to other commonly used models. The CNN-BiGRU model yielded a Mean Absolute Error (MAE) of 2.080% and a root-mean-square error (RMSE) of 2.516% in the case of the battery set #C, referring to a set with 70 cycles already used at 24 °C. Additionally, the End of life (EOL) indicator error of zero cycles for the same data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
賢様666发布了新的文献求助10
刚刚
JingjingYao完成签到,获得积分10
刚刚
彭于晏应助liujian采纳,获得10
1秒前
甜茶发布了新的文献求助10
1秒前
幻翎发布了新的文献求助10
1秒前
大模型应助xxx采纳,获得10
1秒前
小新同学发布了新的文献求助10
1秒前
1秒前
YM完成签到,获得积分10
2秒前
princelee完成签到,获得积分10
4秒前
4秒前
桥豆麻袋完成签到,获得积分10
5秒前
fifi发布了新的文献求助10
5秒前
6秒前
长安的荔枝给长安的荔枝的求助进行了留言
6秒前
6秒前
ccyy发布了新的文献求助10
6秒前
丘比特应助开心的又夏采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
无奈曼云发布了新的文献求助10
7秒前
指沙发布了新的文献求助10
7秒前
8秒前
111完成签到,获得积分10
9秒前
10秒前
2号发布了新的文献求助10
10秒前
10秒前
筱鳴童學发布了新的文献求助10
11秒前
领导范儿应助ZXCVB采纳,获得10
11秒前
陈扬完成签到 ,获得积分20
11秒前
11秒前
13秒前
13秒前
Aurora发布了新的文献求助10
13秒前
一地狗粮发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
13秒前
tianzhanggong完成签到,获得积分10
14秒前
任罗川完成签到,获得积分10
14秒前
mmmm完成签到,获得积分10
14秒前
ccyy完成签到,获得积分10
14秒前
yg发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966