计算机科学
均方误差
卷积神经网络
超参数
人工智能
稳健性(进化)
电池组
模式识别(心理学)
电池(电)
数学
统计
生物化学
化学
功率(物理)
物理
量子力学
基因
作者
Yahia Mazzi,Hicham Ben Sassi,Fatima Errahimi
标识
DOI:10.1016/j.engappai.2023.107199
摘要
This paper proposes a real-time state of health (SOH) estimation model based on a deep learning (DL) framework. The proposed model is a combination of two different architectures; a one-dimensional convolutional neural network (1D-CNN) and a bidirectional gated recurrent unit (BiGRU). The hybrid CNN-BiGRU uses the 1D CNN layers to extract pertinent features from input data and then relies on the BiGRU layers for sequence learning in both directions. To account for all SOH indicators, the proposed approach uses the current, voltage, and temperature measurements, which are readily obtainable from the electric vehicle's battery management system (BMS). This prevents the complex and time-consuming feature extraction used in most related papers. Since the hyperparameters have a significant impact on the performance of neural network models, a Bayesian Optimization (BO) technique based on the Gaussian Process (GP) was considered to tune the CNN-BiGRU model hyperparameters. Accordingly, the objective function was able to converge to a low Mean Squared Error (MSE) of 1.2×10−5 in just 19 iterations. Afterward, to verify the accuracy of the optimized model, a Lithium-ion battery dataset with several discharge profiles provided by the National Aeronautics and Space Administration (NASA) was used. The obtained results demonstrated the accuracy and robustness of the proposed method compared to other commonly used models. The CNN-BiGRU model yielded a Mean Absolute Error (MAE) of 2.080% and a root-mean-square error (RMSE) of 2.516% in the case of the battery set #C, referring to a set with 70 cycles already used at 24 °C. Additionally, the End of life (EOL) indicator error of zero cycles for the same data.
科研通智能强力驱动
Strongly Powered by AbleSci AI