计量经济学
广义矩量法
资本资产定价模型
力矩(物理)
随机贴现因子
因子分析
衡平法
经济
集合(抽象数据类型)
计算机科学
数学
数学优化
面板数据
物理
经典力学
政治学
法学
程序设计语言
作者
Liyuan Cui,Guanhao Feng,Yongmiao Hong
摘要
Abstract We propose a regularized generalized method of moments (RegGMM) approach to estimating time‐varying coefficient models via a ridge fusion penalty with a high‐dimensional set of moment conditions. RegGMM only requires a mild condition on the oscillations between consecutive parameter values, accommodating abrupt structural breaks and smooth changes throughout the sample period. RegGMM offers an alternative solution for estimating the time‐varying stochastic discount factor model when pricing U.S. equity cross‐sectional returns. Our time‐varying estimate paths for factor risk prices capture changing performance across multiple risk factors and depict potential regime‐switching scenarios. Finally, RegGMM demonstrates superior asset pricing and investment performance gains compared to alternative methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI