A shale gas production prediction model based on masked convolutional neural network

卷积神经网络 油页岩 页岩气 块(置换群论) 生产(经济) 特征(语言学) 人工神经网络 计算机科学 模式识别(心理学) 卷积(计算机科学) 人工智能 石油工程 算法 工程类 数学 语言学 哲学 经济 宏观经济学 废物管理 几何学
作者
Wei Zhou,Xiangchengzhen Li,ZhongLi Qi,HaiHang Zhao,Jun Yi
出处
期刊:Applied Energy [Elsevier]
卷期号:353: 122092-122092 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122092
摘要

Shale gas production prediction is of great significance for shale gas exploration and development, as it can optimize exploration strategies and guide adjustments to production parameters for both new and existing wells. However, the dynamic production characteristics of shale gas wells under the influence of multiple factors such as reservoirs, engineering, and production, exhibit complex nonlinear and non-stationary features, leading to low accuracy in predicting shale gas production. To address this issue, a novel masked convolutional neural network (M-CNN) based on masked autoencoders (MAE) is proposed for shale gas production prediction. First, high-dimensional shale gas production data are transformed into images with unknown information using an encoding structure, thereby converting the regression task into images generation task. Then, convolutional neural network is used for image restoration prediction, and the corresponding numerical values at the image positions are extracted as shale gas production prediction results. Specifically, dilated convolution and multi-scale residual structure (MSRS) are developed to improve the feature representation capability of the network. Meanwhile, convolutional block attention module (CBAM) is adopted to enhance the feature extraction ability of the M-CNN. The performance of our method is validated experimentally on shale gas production data of Changning (CN) block in China. The average RMSE, MRE, and R2 on the test sets are 0.211 (104m3/d), 10.9%, and 0.906, respectively, which is much lower than the traditional time series models. Experimental results demonstrate the effectiveness and superiority of the proposed M-CNN method for shale gas production prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
godccc完成签到,获得积分10
刚刚
鲈鱼发布了新的文献求助10
刚刚
1秒前
在水一方应助新一采纳,获得10
2秒前
美满忆文发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
xxb发布了新的文献求助10
3秒前
4秒前
4秒前
一二三完成签到,获得积分20
4秒前
嘻嘻哈哈应助veggieg采纳,获得20
5秒前
粗犷的沛容应助veggieg采纳,获得50
5秒前
大个应助veggieg采纳,获得10
5秒前
嘻嘻哈哈应助veggieg采纳,获得20
5秒前
无花果应助veggieg采纳,获得10
5秒前
5秒前
CodeCraft应助veggieg采纳,获得10
5秒前
5秒前
慕青应助veggieg采纳,获得10
5秒前
粗犷的沛容应助veggieg采纳,获得50
5秒前
科研通AI6应助echo采纳,获得10
6秒前
浮游应助研友_ZA7B7L采纳,获得10
6秒前
6秒前
小帅发布了新的文献求助10
6秒前
哈哈哈哈完成签到,获得积分10
7秒前
viauue9完成签到,获得积分10
7秒前
dynamoo应助YUJIALING采纳,获得10
7秒前
YYY发布了新的文献求助10
8秒前
乘风完成签到 ,获得积分10
8秒前
淡蓝时光完成签到,获得积分10
8秒前
1111发布了新的文献求助10
8秒前
caffeine发布了新的文献求助10
8秒前
赘婿应助柒染采纳,获得10
9秒前
___赵发布了新的文献求助10
9秒前
我是老大应助蒸馏水采纳,获得10
9秒前
aha发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812