SARGAN: A Novel SAR Image Generation Method for SAR Ship Detection Task

合成孔径雷达 计算机科学 人工智能 计算机视觉 发电机(电路理论) 方位角 雷达成像 图像(数学) 深度学习 任务(项目管理) 遥感 雷达 模式识别(心理学) 工程类 地理 系统工程 量子力学 天文 电信 功率(物理) 物理
作者
Moran Ju,Buniu Niu,Qing Hu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (22): 28500-28512 被引量:2
标识
DOI:10.1109/jsen.2023.3323322
摘要

Deep learning-based synthetic aperture radar (SAR) ship detection methods are significant in signal processing and radar imaging. However, these approaches always require large-scale SAR ship images with labels to train the model. Due to the inaccessibility of SAR sensors, it is difficult to acquire enough SAR images. Annotating ship targets also demands resources and manpower. To tackle this issue, we propose a novel SAR image generation method named SARGAN for SAR ship detection task. Given the position and category, SARGAN can generate realistic SAR images with SAR ship targets, land, and background in the desired location. In the SARGAN, there are five components: target encoder, scene constructor, SAR image generator, and target and image discriminators. The target encoder is introduced to predict the latent vector for each target, while the scene constructor integrates all targets in the entire scene using convolutional LSTM. We improve the structure of the SAR image generator by adding operations to generate high-quality images. The image and target discriminators are responsible for distinguishing between real and fake samples, with the latter also predicting the category. To promote the generation of diverse and realistic SAR ship images, multiple loss functions are employed for training. Additionally, we have annotated the lands and background in the high-resolution SAR images dataset (HRSID) and combined them with labeled ships to create a new dataset for training and testing of SARGAN. Extensive experiments demonstrate that SARGAN outperforms other SAR image generation methods, and the generated SAR ship images are highly conducive for SAR ship detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的问兰完成签到,获得积分10
1秒前
1秒前
酷波er应助Arhtur采纳,获得10
1秒前
可爱的函函应助银鱼在游采纳,获得10
1秒前
songshu驳回了123应助
1秒前
982289172完成签到,获得积分10
1秒前
称心的以蕊完成签到,获得积分10
2秒前
洁净半梦发布了新的文献求助10
2秒前
优秀的雨筠完成签到 ,获得积分10
2秒前
李健应助家秋白采纳,获得10
2秒前
2秒前
czp完成签到,获得积分10
2秒前
wsg发布了新的文献求助10
2秒前
2秒前
夕夕成玦完成签到 ,获得积分10
3秒前
3秒前
开心元霜发布了新的文献求助20
3秒前
吕小软完成签到,获得积分10
3秒前
活力半蕾发布了新的文献求助10
3秒前
先流浪完成签到 ,获得积分10
3秒前
小溪发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助no采纳,获得10
4秒前
4秒前
佐小叶完成签到 ,获得积分10
4秒前
儒雅鞋子完成签到,获得积分10
4秒前
4秒前
秋子david完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
生动的战斗机完成签到,获得积分10
5秒前
eric888应助科研通管家采纳,获得100
5秒前
lu发布了新的文献求助10
5秒前
5秒前
浪子应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700