SARGAN: A Novel SAR Image Generation Method for SAR Ship Detection Task

合成孔径雷达 计算机科学 人工智能 计算机视觉 发电机(电路理论) 方位角 雷达成像 图像(数学) 深度学习 任务(项目管理) 遥感 雷达 模式识别(心理学) 工程类 地理 系统工程 量子力学 天文 电信 功率(物理) 物理
作者
Moran Ju,Buniu Niu,Qing Hu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (22): 28500-28512 被引量:2
标识
DOI:10.1109/jsen.2023.3323322
摘要

Deep learning-based synthetic aperture radar (SAR) ship detection methods are significant in signal processing and radar imaging. However, these approaches always require large-scale SAR ship images with labels to train the model. Due to the inaccessibility of SAR sensors, it is difficult to acquire enough SAR images. Annotating ship targets also demands resources and manpower. To tackle this issue, we propose a novel SAR image generation method named SARGAN for SAR ship detection task. Given the position and category, SARGAN can generate realistic SAR images with SAR ship targets, land, and background in the desired location. In the SARGAN, there are five components: target encoder, scene constructor, SAR image generator, and target and image discriminators. The target encoder is introduced to predict the latent vector for each target, while the scene constructor integrates all targets in the entire scene using convolutional LSTM. We improve the structure of the SAR image generator by adding operations to generate high-quality images. The image and target discriminators are responsible for distinguishing between real and fake samples, with the latter also predicting the category. To promote the generation of diverse and realistic SAR ship images, multiple loss functions are employed for training. Additionally, we have annotated the lands and background in the high-resolution SAR images dataset (HRSID) and combined them with labeled ships to create a new dataset for training and testing of SARGAN. Extensive experiments demonstrate that SARGAN outperforms other SAR image generation methods, and the generated SAR ship images are highly conducive for SAR ship detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
刚刚
断棍豪斯完成签到,获得积分10
刚刚
ZC发布了新的文献求助10
刚刚
彭于晏应助科研通管家采纳,获得30
刚刚
yyyyy发布了新的文献求助10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
Hilda007应助科研通管家采纳,获得20
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
肉夹馍发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
1秒前
1秒前
www发布了新的文献求助10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
刘桦境发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
LX应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
zzz关闭了zzz文献求助
2秒前
给个麦你呗完成签到 ,获得积分10
2秒前
Ancestor完成签到,获得积分20
2秒前
2秒前
现代的无春完成签到,获得积分10
2秒前
拉长的冷霜完成签到 ,获得积分10
3秒前
雅若晨兮完成签到,获得积分20
3秒前
Wangjingxuan完成签到,获得积分10
3秒前
4秒前
tt发布了新的文献求助10
4秒前
乐乐应助eui采纳,获得10
5秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586092
求助须知:如何正确求助?哪些是违规求助? 4669441
关于积分的说明 14778117
捐赠科研通 4618823
什么是DOI,文献DOI怎么找? 2530777
邀请新用户注册赠送积分活动 1499538
关于科研通互助平台的介绍 1467782