SARGAN: A Novel SAR Image Generation Method for SAR Ship Detection Task

合成孔径雷达 计算机科学 人工智能 计算机视觉 发电机(电路理论) 方位角 雷达成像 图像(数学) 深度学习 任务(项目管理) 遥感 雷达 模式识别(心理学) 工程类 地理 系统工程 量子力学 天文 电信 功率(物理) 物理
作者
Moran Ju,Buniu Niu,Qing Hu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (22): 28500-28512 被引量:2
标识
DOI:10.1109/jsen.2023.3323322
摘要

Deep learning-based synthetic aperture radar (SAR) ship detection methods are significant in signal processing and radar imaging. However, these approaches always require large-scale SAR ship images with labels to train the model. Due to the inaccessibility of SAR sensors, it is difficult to acquire enough SAR images. Annotating ship targets also demands resources and manpower. To tackle this issue, we propose a novel SAR image generation method named SARGAN for SAR ship detection task. Given the position and category, SARGAN can generate realistic SAR images with SAR ship targets, land, and background in the desired location. In the SARGAN, there are five components: target encoder, scene constructor, SAR image generator, and target and image discriminators. The target encoder is introduced to predict the latent vector for each target, while the scene constructor integrates all targets in the entire scene using convolutional LSTM. We improve the structure of the SAR image generator by adding operations to generate high-quality images. The image and target discriminators are responsible for distinguishing between real and fake samples, with the latter also predicting the category. To promote the generation of diverse and realistic SAR ship images, multiple loss functions are employed for training. Additionally, we have annotated the lands and background in the high-resolution SAR images dataset (HRSID) and combined them with labeled ships to create a new dataset for training and testing of SARGAN. Extensive experiments demonstrate that SARGAN outperforms other SAR image generation methods, and the generated SAR ship images are highly conducive for SAR ship detection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shanshan完成签到,获得积分10
刚刚
桦桦完成签到,获得积分10
1秒前
MQueen完成签到,获得积分10
1秒前
火羊宝发布了新的文献求助10
1秒前
cycl完成签到,获得积分10
2秒前
纹银完成签到,获得积分10
2秒前
木槐草完成签到 ,获得积分10
2秒前
WKY完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
英俊的铭应助不吃芒果采纳,获得10
3秒前
xxwxx完成签到,获得积分10
4秒前
小丸子呀发布了新的文献求助10
4秒前
4秒前
6秒前
离希夷完成签到,获得积分10
7秒前
岩追研完成签到,获得积分10
8秒前
lucid完成签到,获得积分10
8秒前
小蘑菇应助simon采纳,获得10
9秒前
9秒前
CL837809486完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
夕荀发布了新的文献求助10
10秒前
10秒前
10秒前
研友_VZG7GZ应助独特的追命采纳,获得30
10秒前
11秒前
布布完成签到 ,获得积分10
11秒前
善良书蝶完成签到 ,获得积分10
11秒前
11秒前
852应助jyh采纳,获得10
12秒前
12秒前
星辰大海应助金木采纳,获得10
12秒前
12秒前
13秒前
无限若云发布了新的文献求助10
13秒前
chenhouhan发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271