SARGAN: A Novel SAR Image Generation Method for SAR Ship Detection Task

合成孔径雷达 计算机科学 人工智能 计算机视觉 发电机(电路理论) 方位角 雷达成像 图像(数学) 深度学习 任务(项目管理) 遥感 雷达 模式识别(心理学) 工程类 地理 电信 物理 量子力学 功率(物理) 系统工程 天文
作者
Moran Ju,Buniu Niu,Qing Hu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (22): 28500-28512 被引量:2
标识
DOI:10.1109/jsen.2023.3323322
摘要

Deep learning-based synthetic aperture radar (SAR) ship detection methods are significant in signal processing and radar imaging. However, these approaches always require large-scale SAR ship images with labels to train the model. Due to the inaccessibility of SAR sensors, it is difficult to acquire enough SAR images. Annotating ship targets also demands resources and manpower. To tackle this issue, we propose a novel SAR image generation method named SARGAN for SAR ship detection task. Given the position and category, SARGAN can generate realistic SAR images with SAR ship targets, land, and background in the desired location. In the SARGAN, there are five components: target encoder, scene constructor, SAR image generator, and target and image discriminators. The target encoder is introduced to predict the latent vector for each target, while the scene constructor integrates all targets in the entire scene using convolutional LSTM. We improve the structure of the SAR image generator by adding operations to generate high-quality images. The image and target discriminators are responsible for distinguishing between real and fake samples, with the latter also predicting the category. To promote the generation of diverse and realistic SAR ship images, multiple loss functions are employed for training. Additionally, we have annotated the lands and background in the high-resolution SAR images dataset (HRSID) and combined them with labeled ships to create a new dataset for training and testing of SARGAN. Extensive experiments demonstrate that SARGAN outperforms other SAR image generation methods, and the generated SAR ship images are highly conducive for SAR ship detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
hh发布了新的文献求助10
刚刚
Tang125完成签到 ,获得积分10
1秒前
Sss完成签到,获得积分10
1秒前
稳重笑南完成签到,获得积分10
2秒前
3秒前
尔池发布了新的文献求助30
3秒前
4秒前
好滴捏发布了新的文献求助10
4秒前
4秒前
4秒前
zzrg完成签到,获得积分10
4秒前
q792309106发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
7秒前
LiZhenhua发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
章芷雪完成签到,获得积分10
8秒前
披星戴月完成签到,获得积分10
9秒前
sjxbjrndkd完成签到 ,获得积分10
9秒前
Bryan应助Camellia采纳,获得10
10秒前
Lucas应助xzbsz采纳,获得10
10秒前
10秒前
10秒前
情怀应助好滴捏采纳,获得10
11秒前
11秒前
小二郎应助liuker采纳,获得30
12秒前
13秒前
白榆完成签到 ,获得积分10
13秒前
13秒前
YYY完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993660
求助须知:如何正确求助?哪些是违规求助? 3534375
关于积分的说明 11265355
捐赠科研通 3274133
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712