Joint classification and segmentation for an interpretable diagnosis of acute respiratory distress syndrome from chest x-rays

急性呼吸窘迫综合征 医学 急性呼吸窘迫 放射科 射线照相术 胸片 分割 人工智能 内科学 计算机科学
作者
Mohammad Yahyatabar,Philippe Jouvet,Foued Cheriet
出处
期刊:Journal of medical imaging [SPIE]
卷期号:10 (05)
标识
DOI:10.1117/1.jmi.10.5.054504
摘要

PurposeAcute respiratory distress syndrome (ARDS) is a life-threatening condition that can cause a dramatic drop in blood oxygen levels due to widespread lung inflammation. Chest radiography is widely used as a primary modality to detect ARDS due to its crucial role in diagnosing the syndrome, and the x-ray images can be obtained promptly. However, despite the extensive literature on chest x-ray (CXR) image analysis, there is limited research on ARDS diagnosis due to the scarcity of ARDS-labeled datasets. Additionally, many machine learning-based approaches result in high performance in pulmonary disease diagnosis, but their decisions are often not easily interpretable, which can hinder their clinical acceptance. This work aims to develop a method for detecting signs of ARDS in CXR images that can be clinically interpretable.ApproachTo achieve this goal, an ARDS-labeled dataset of chest radiography images is gathered and annotated for training and evaluation of the proposed approach. The proposed deep classification-segmentation model, Dense-Ynet, provides an interpretable framework for automatically diagnosing ARDS in CXR images. The model takes advantage of lung segmentation in diagnosing ARDS. By definition, ARDS causes bilateral diffuse infiltrates throughout the lungs. To consider the local involvement of lung areas, each lung is divided into upper and lower halves, and our model classifies the resulting lung quadrants.ResultsThe quadrant-based classification strategy yields the area under the receiver operating characteristic curve of 95.1% (95% CI 93.5 to 96.1), which allows for providing a reference for the model’s predictions. In terms of segmentation, the model accurately identifies lung regions in CXR images even when lung boundaries are unclear in abnormal images.ConclusionsThis study provides an interpretable decision system for diagnosing ARDS, by following the definition used by clinicians for the diagnosis of ARDS from CXR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜发布了新的文献求助10
刚刚
外向的斑马完成签到 ,获得积分10
1秒前
村长热爱美丽完成签到 ,获得积分10
3秒前
尹尹关注了科研通微信公众号
5秒前
呆呆完成签到 ,获得积分10
6秒前
xianyaoz完成签到 ,获得积分0
13秒前
杨远杰完成签到,获得积分10
14秒前
蓝桉完成签到 ,获得积分10
14秒前
JuliaWang完成签到 ,获得积分10
21秒前
无限的含羞草完成签到,获得积分10
22秒前
八二力完成签到 ,获得积分10
26秒前
韭菜发布了新的文献求助10
29秒前
情怀应助科研通管家采纳,获得30
32秒前
water应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
2012csc完成签到 ,获得积分0
34秒前
风清扬应助韭菜采纳,获得10
35秒前
WSY完成签到 ,获得积分10
36秒前
虞无声发布了新的文献求助10
37秒前
执着新蕾完成签到,获得积分10
39秒前
Vivian完成签到 ,获得积分10
42秒前
666完成签到 ,获得积分10
44秒前
49秒前
量子星尘发布了新的文献求助10
52秒前
蔡从安完成签到,获得积分10
52秒前
奥雷里亚诺完成签到 ,获得积分10
52秒前
不呆完成签到 ,获得积分10
53秒前
Cheung2121发布了新的文献求助30
53秒前
画龙完成签到,获得积分10
54秒前
韭菜完成签到,获得积分20
55秒前
Owen应助Cheung2121采纳,获得10
58秒前
爱学习的小李完成签到 ,获得积分10
1分钟前
若水完成签到 ,获得积分10
1分钟前
SYLH应助tian采纳,获得10
1分钟前
脑洞疼应助tian采纳,获得10
1分钟前
Ava应助tian采纳,获得10
1分钟前
领导范儿应助tian采纳,获得10
1分钟前
桐桐应助tian采纳,获得10
1分钟前
乐乐应助tian采纳,获得10
1分钟前
乐乐应助tian采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022