Joint classification and segmentation for an interpretable diagnosis of acute respiratory distress syndrome from chest x-rays

急性呼吸窘迫综合征 医学 急性呼吸窘迫 放射科 射线照相术 胸片 分割 人工智能 内科学 计算机科学
作者
Mohammad Yahyatabar,Philippe Jouvet,Foued Cheriet
出处
期刊:Journal of medical imaging [SPIE]
卷期号:10 (05)
标识
DOI:10.1117/1.jmi.10.5.054504
摘要

PurposeAcute respiratory distress syndrome (ARDS) is a life-threatening condition that can cause a dramatic drop in blood oxygen levels due to widespread lung inflammation. Chest radiography is widely used as a primary modality to detect ARDS due to its crucial role in diagnosing the syndrome, and the x-ray images can be obtained promptly. However, despite the extensive literature on chest x-ray (CXR) image analysis, there is limited research on ARDS diagnosis due to the scarcity of ARDS-labeled datasets. Additionally, many machine learning-based approaches result in high performance in pulmonary disease diagnosis, but their decisions are often not easily interpretable, which can hinder their clinical acceptance. This work aims to develop a method for detecting signs of ARDS in CXR images that can be clinically interpretable.ApproachTo achieve this goal, an ARDS-labeled dataset of chest radiography images is gathered and annotated for training and evaluation of the proposed approach. The proposed deep classification-segmentation model, Dense-Ynet, provides an interpretable framework for automatically diagnosing ARDS in CXR images. The model takes advantage of lung segmentation in diagnosing ARDS. By definition, ARDS causes bilateral diffuse infiltrates throughout the lungs. To consider the local involvement of lung areas, each lung is divided into upper and lower halves, and our model classifies the resulting lung quadrants.ResultsThe quadrant-based classification strategy yields the area under the receiver operating characteristic curve of 95.1% (95% CI 93.5 to 96.1), which allows for providing a reference for the model’s predictions. In terms of segmentation, the model accurately identifies lung regions in CXR images even when lung boundaries are unclear in abnormal images.ConclusionsThis study provides an interpretable decision system for diagnosing ARDS, by following the definition used by clinicians for the diagnosis of ARDS from CXR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiao应助耍酷曼雁采纳,获得30
刚刚
阳佟半仙发布了新的文献求助10
刚刚
乐观的海雪完成签到,获得积分20
刚刚
1秒前
1秒前
miao发布了新的文献求助10
1秒前
moneymoney完成签到,获得积分10
1秒前
清新的Q完成签到,获得积分10
2秒前
2秒前
高高高完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
xiaochuan完成签到,获得积分10
4秒前
尊敬的扬发布了新的文献求助10
4秒前
文静的翠安完成签到,获得积分10
4秒前
猫猫发布了新的文献求助10
4秒前
UU完成签到,获得积分10
4秒前
善良身影发布了新的文献求助10
4秒前
5秒前
DEREK发布了新的文献求助10
5秒前
xmz完成签到,获得积分10
5秒前
李太白云游四海完成签到,获得积分10
5秒前
Zgrey完成签到,获得积分10
5秒前
烂漫的汲完成签到,获得积分10
6秒前
jingyi完成签到,获得积分10
6秒前
石石刘发布了新的文献求助10
6秒前
yang完成签到,获得积分10
6秒前
zhaofw完成签到,获得积分10
7秒前
甜酒发布了新的文献求助10
7秒前
7秒前
wyl发布了新的文献求助10
7秒前
传奇3应助ty采纳,获得10
7秒前
7秒前
willow完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755