Joint classification and segmentation for an interpretable diagnosis of acute respiratory distress syndrome from chest x-rays

急性呼吸窘迫综合征 医学 急性呼吸窘迫 放射科 射线照相术 胸片 分割 人工智能 内科学 计算机科学
作者
Mohammad Yahyatabar,Philippe Jouvet,Foued Cheriet
出处
期刊:Journal of medical imaging [SPIE]
卷期号:10 (05)
标识
DOI:10.1117/1.jmi.10.5.054504
摘要

PurposeAcute respiratory distress syndrome (ARDS) is a life-threatening condition that can cause a dramatic drop in blood oxygen levels due to widespread lung inflammation. Chest radiography is widely used as a primary modality to detect ARDS due to its crucial role in diagnosing the syndrome, and the x-ray images can be obtained promptly. However, despite the extensive literature on chest x-ray (CXR) image analysis, there is limited research on ARDS diagnosis due to the scarcity of ARDS-labeled datasets. Additionally, many machine learning-based approaches result in high performance in pulmonary disease diagnosis, but their decisions are often not easily interpretable, which can hinder their clinical acceptance. This work aims to develop a method for detecting signs of ARDS in CXR images that can be clinically interpretable.ApproachTo achieve this goal, an ARDS-labeled dataset of chest radiography images is gathered and annotated for training and evaluation of the proposed approach. The proposed deep classification-segmentation model, Dense-Ynet, provides an interpretable framework for automatically diagnosing ARDS in CXR images. The model takes advantage of lung segmentation in diagnosing ARDS. By definition, ARDS causes bilateral diffuse infiltrates throughout the lungs. To consider the local involvement of lung areas, each lung is divided into upper and lower halves, and our model classifies the resulting lung quadrants.ResultsThe quadrant-based classification strategy yields the area under the receiver operating characteristic curve of 95.1% (95% CI 93.5 to 96.1), which allows for providing a reference for the model’s predictions. In terms of segmentation, the model accurately identifies lung regions in CXR images even when lung boundaries are unclear in abnormal images.ConclusionsThis study provides an interpretable decision system for diagnosing ARDS, by following the definition used by clinicians for the diagnosis of ARDS from CXR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助信仰阳光快乐采纳,获得10
1秒前
2秒前
zsj3787完成签到,获得积分20
3秒前
今后应助youyou采纳,获得10
4秒前
Sisi发布了新的文献求助10
4秒前
4秒前
上官若男应助海海采纳,获得30
4秒前
云襄发布了新的文献求助10
5秒前
天天快乐应助科研小白采纳,获得10
5秒前
雪糕完成签到,获得积分10
5秒前
6秒前
tyy完成签到,获得积分10
6秒前
6秒前
liang完成签到,获得积分10
6秒前
传奇3应助zsj3787采纳,获得10
6秒前
6秒前
Hello应助科研快乐小狗采纳,获得10
6秒前
皮蛋瘦肉周完成签到,获得积分10
7秒前
xiaofan发布了新的文献求助10
7秒前
hu发布了新的文献求助30
8秒前
8秒前
脑洞疼应助YYY采纳,获得10
8秒前
Jasper应助lishuai采纳,获得10
9秒前
HH完成签到 ,获得积分10
9秒前
寒冷归尘完成签到,获得积分20
10秒前
Owen应助HY采纳,获得10
10秒前
11秒前
复杂听筠发布了新的文献求助30
11秒前
爆米花应助椰子采纳,获得10
11秒前
12秒前
银匠完成签到,获得积分10
12秒前
tyy发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
wenwen完成签到,获得积分10
13秒前
上善若水发布了新的文献求助10
13秒前
LLL完成签到,获得积分10
14秒前
寒冷归尘发布了新的文献求助10
14秒前
玖生发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130